Abstract: A control circuit for operating the lights of a vehicle. In one embodiment, the rear lights of the vehicle are controlled by the control circuit. The control circuit illuminates two or more of the vehicle lights in a common pattern to indicate a specific vehicle operation. When the vehicle simultaneously performs two operations, the controller may transition the lights to illuminate in different patterns to clearly indicate the separate vehicle operations. The controller may further provide for adjusting the light intensity of one or more of the lights. The lights may be adjusted to have a similar intensity to prevent confusion when the different lights are used in combination to indicate a vehicle operation.
Abstract: Vehicle indicator lights, such as run-brake lights and/or side running lights, are converted to run-turn-brake indicator lights. A run-turn-brake converter is connected to vehicle-supplied run, brake, left turn, and right turn signal leads, the run-turn-brake converter producing left and right run-turn-brake signals. Existing vehicle wiring is reconfigured by disconnecting a first lead wire from the low-intensity input of a first three-terminal brake-run light socket, disconnecting a second lead wire from the low-intensity input terminal of a second three-terminal brake-run light socket, disconnecting a third lead wire from the high-intensity input terminal of the second three-terminal brake-run light socket, and connecting the second lead wire to the high-intensity input terminal of the second three-terminal brake-run light socket. The left and right run-turn-brake signals are connected to the sockets via the second lead wire and via a fourth lead wire, respectively.