Patents Assigned to Cyberheart, Inc.
  • Patent number: 10792511
    Abstract: The invention provides a non-invasive method for treatment of arrhythmia. In a first aspect, a method for treatment of atrial fibrillation in a heart of a patient comprises directing radiation from outside the patient toward one or more target treatment regions of the heart so as to inhibit the atrial fibrillation. The radiation may induce isolation of a pulmonary vein.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 6, 2020
    Assignee: Cyberheart, Inc.
    Inventors: Michail Pankratov, Federico Benetti, Judie Vivian
  • Publication number: 20190351254
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 19, 2018
    Publication date: November 21, 2019
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20190321658
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Application
    Filed: November 19, 2018
    Publication date: October 24, 2019
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire
  • Patent number: 9968801
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: May 15, 2018
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Edward Gardner
  • Patent number: 9907978
    Abstract: The invention provides a non-invasive method for treatment of arrhythmia. In a first aspect, a method for treatment of atrial fibrillation in a heart of a patient comprises directing radiation from outside the patient toward one or more target treatment regions of the heart so as to inhibit the atrial fibrillation. The radiation may induce isolation of a pulmonary vein.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: March 6, 2018
    Assignee: CyberHeart, Inc.
    Inventors: Michail Pankratov, Federico Benetti, Judie Vivian
  • Publication number: 20170065831
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9504853
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: November 29, 2016
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20160279442
    Abstract: The invention provides a non-invasive method for treatment of arrhythmia. In a first aspect, a method for treatment of atrial fibrillation in a heart of a patient comprises directing radiation from outside the patient toward one or more target treatment regions of the heart so as to inhibit the atrial fibrillation. The radiation may induce isolation of a pulmonary vein.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Applicant: CyberHeart, Inc.
    Inventors: Michail Pankratov, Federico Benetti, Judie Vivian
  • Patent number: 9320916
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 26, 2016
    Assignee: CYBERHEART, INC.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9205279
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 8, 2015
    Assignee: CYBERHEART, INC.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 8805481
    Abstract: The invention provides a non-invasive system and method for treatment of the heart. In a first aspect, a method for treatment of an anatomical site related to arrhythmogenesis of a heart of a patient comprises creating a target shape encompassing the anatomical site, directing particle beam radiation or x-ray radiation from outside the patient toward the target shape wherein one or more doses of radiation ablates the target shape and disregarding at least one orientation of cardiac motion while creating the target shape or directing the particle beam or both.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 12, 2014
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Roderick A. Young
  • Patent number: 8792613
    Abstract: A target motion simulator system for use in verifying target tracking with a radiation therapy device. The system comprises a radiation detection target coupled to a first motion actuator simulating a first motion of a first tissue and a fiducial coupled to a second motion actuator simulating a second motion of a second tissue offset from the first tissue, a component of the first motion being asynchronous with the second motion. A synthetic physiological signal generator is synchronized with the component of the first motion, wherein an output signal from the generator, in combination with a sensed position of the fiducial, may be used by the radiation therapy device in tracking the target.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 29, 2014
    Assignee: CyberHeart, Inc.
    Inventors: Edward Gardner, Thilaka Sumanaweera
  • Patent number: 8784290
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 22, 2014
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 8696658
    Abstract: The invention provides a non-invasive method for treatment of arrhythmia. In a first aspect, a method for treatment of a trial fibrillation in a heart of a patient comprises directing radiation from outside the patient toward one or more target treatment regions of the heart so as to inhibit the a trial fibrillation. The radiation may induce isolation of a pulmonary vein.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: April 15, 2014
    Assignee: CyberHeart, Inc.
    Inventors: Michail Pankratov, Federico Benetti, Judie Vivian
  • Publication number: 20130131426
    Abstract: The invention provides a non-invasive system and method for treatment of the heart. In a first aspect, a method for treatment of an anatomical site related to arrhythmogenesis of a heart of a patient comprises creating a target shape encompassing the anatomical site, directing particle beam radiation or x-ray radiation from outside the patient toward the target shape wherein one or more doses of radiation ablates the target shape and disregarding at least one orientation of cardiac motion while creating the target shape or directing the particle beam or both.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 23, 2013
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Roderick A. Young
  • Publication number: 20130131425
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 23, 2013
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20130102896
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 25, 2013
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Patent number: 8345821
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 1, 2013
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Publication number: 20120323233
    Abstract: A radiosurgical method for treating cardiorenal disease of a patient, the method including directing radiosurgery radiation from outside the patient towards one or more target treatment regions encompassing sympathetic ganglia of the patient so as to inhibit the cardiorenal disease. In an exemplary embodiment, the method further includes acquiring three dimensional planning image data encompassing the first and second renal arteries, planning an ionizing radiation treatment of first and second target regions using the three dimensional planning image data so as to mitigate the hypertension, the first and second target regions encompassing neural tissue of or proximate to the first and second renal arteries, respectively, and remodeling the target regions by directing the planned radiation from outside the body toward the target regions.
    Type: Application
    Filed: May 9, 2012
    Publication date: December 20, 2012
    Applicant: CyberHeart, Inc.
    Inventors: Patrick Maguire, Edward Gardner
  • Patent number: 8315691
    Abstract: The invention provides a non-invasive system and method for treatment of the heart. In a first aspect, a method for treatment of an anatomical site related to arrhythmogenesis of a heart of a patient comprises creating a target shape encompassing the anatomical site, directing particle beam radiation or x-ray radiation from outside the patient toward the target shape wherein one or more doses of radiation ablates the target shape and disregarding at least one orientation of cardiac motion while creating the target shape or directing the particle beam or both.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 20, 2012
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Roderick A. Young