Patents Assigned to Cyberkinetics, Inc.
  • Patent number: 8771035
    Abstract: An apparatus and method for continuously monitoring the weight of an object. The apparatus does not obstruct a central portion of the bottom of the object being monitored, and is especially well-suited for monitoring the weight of a beehive. In the illustrative embodiment, a ring-shaped fluid-filled bladder is sandwiched between a ring-shaped top surface and a ring-shaped base, and a pressure hose connects the bladder to a pressure gauge. Beehive weight data can be obtained in a continuous fashion, without requiring any moving of the beehive or of the apparatus, and without any other type of disruption. Moreover, the apparatus provides a stable platform that keeps the beehive immobile during monitoring, which is beneficial for the health of the colony. Advantageously, the apparatus can be constructed from inexpensive, off-the-shelf components and materials, and is capable of obtaining accurate measurements over a wide range of temperatures and environmental conditions.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 8, 2014
    Assignee: Cyberkinetics, Inc.
    Inventor: Stephen Adam Engel
  • Publication number: 20130196570
    Abstract: An apparatus and method for continuously monitoring the weight of an object are disclosed. The apparatus does not obstruct a central portion of the bottom of the object being monitored, and is especially well-suited for monitoring the weight of a beehive. In the illustrative embodiment, a ring-shaped fluid-filled bladder is sandwiched between a ring-shaped top surface and a ring-shaped base, and a pressure hose connects the bladder to a pressure gauge. Beehive weight data can be obtained in a continuous fashion, without requiring any moving of the beehive or of the apparatus, and without any other type of disruption. Moreover, the apparatus provides a stable platform that keeps the beehive immobile during monitoring, which is beneficial for the health of the colony. Advantageously, the apparatus can be constructed from inexpensive, off-the-shelf components and materials, and is capable of obtaining accurate measurements over a wide range of temperatures and environmental conditions.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 1, 2013
    Applicant: CYBERKINETICS, INC.
    Inventor: Cyberkinetics, Inc.
  • Publication number: 20100063411
    Abstract: A system and method for a neural interface system with integral calibration elements may include a sensor including a plurality of electrodes to detect multicellular signals, an interface to process the signals from the sensor into a suitable control signal for a controllable device, such as a computer or prosthetic limb, and an integrated calibration routine to efficiently create calibration output parameters used to generate the control signal. A graphical user interface may be used to make various portions of the calibration and signal processing configuration more efficient and effective.
    Type: Application
    Filed: October 15, 2008
    Publication date: March 11, 2010
    Applicant: Cyberkinetics, Inc.
    Inventors: John P. Donoghue, J. Christopher Flaherty, Mijail D. Serruya, Abraham H. Caplan, Maryam Saleh, Kirk F. Korver, Almut Branner
  • Publication number: 20040249302
    Abstract: System and methods consistent with the present invention decode brain signals. The system includes a receiver for receiving an input signal representing multiple individual neuron signals, and a frequency filter for separating the multiple neuron signals from the received input neural signal. A rectifier full wave rectifies the filtered neural signal and an integrator integrates the rectified neural signal to obtain an envelope of the rectified neural signal. As a result of this processing, sample values of the neural signal envelope represent neurological activity.
    Type: Application
    Filed: June 9, 2003
    Publication date: December 9, 2004
    Applicant: Cyberkinetics, Inc.
    Inventors: John P. Donoghue, Nicholas George Hatsopoulos, Mijail Serruya