Patents Assigned to Cybernet Systems Corp.
  • Publication number: 20210082296
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210082297
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210056499
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 25, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210049543
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 18, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210035056
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210035057
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Patent number: 10907943
    Abstract: A fully automated, integrated, end-to-end synchronized and compact manufacturing system produces polymer or metal case ammunition. Manufacturing stations support case assembly, sealing (gluing/welding), final product inspection, cartridge packaging or binning, and loading. Station modularity facilitates rapid changeover to accommodate ammunition of differing calibers. Sensors and apparatus may be provided to place a manufacturing cell in a wait state until all components or materials are received in a preferred orientation for proper assembly. The system may join and use multipart cases, each including a lower portion with a head end attached thereto and at least one upper portion having a necked-down transition to the open top end. Elevator feeders, vibratory bowl feeders, and robotic pick-and-place feeders may be used to deliver components for assembly.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 2, 2021
    Assignee: Cybernet Systems Corp.
    Inventors: Glenn J. Beach, James Burkowski, Amanda Christiana, Trevor Davey, Charles J. Jacobus, Joseph Long, Gary Moody, Gary Siebert
  • Patent number: 10909866
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 2, 2021
    Assignee: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Patent number: 10861219
    Abstract: A system for performing object identification combines pose determination, EO/IR sensor data, and novel computer graphics rendering techniques. A first module extracts the orientation and distance of a target in a truth chip given that the target type is known. A second is a module identifies the vehicle within a truth chip given the known distance and elevation angle from camera to target. Image matching is based on synthetic image and truth chip image comparison, where the synthetic image is rotated and moved through a 3-Dimensional space. To limit the search space, it is assumed that the object is positioned on relatively flat ground and that the camera roll angle stays near zero. This leaves three dimensions of motion (distance, heading, and pitch angle) to define the space in which the synthetic target is moved. A graphical user interface (GUI) front end allows the user to manually adjust the orientation of the target within the synthetic images.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: December 8, 2020
    Assignee: Cybernet Systems Corp.
    Inventors: Douglas Haanpaa, Charles J. Cohen, Glenn J. Beach, Charles J. Jacobus
  • Patent number: 10726544
    Abstract: A machine vision system for automatically identifying and inspecting objects is disclosed, including composable vision-based recognition modules and a decision algorithm to perform the final determination on object type and quality. This vision system has been used to develop a Projectile Identification System and an Automated Tactical Ammunition Classification System. The technology can be used to create numerous other inspection and automated identification systems.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: July 28, 2020
    Assignee: Cybernet Systems Corp.
    Inventors: Glenn J. Beach, Gary Moody, James Burkowski, Charles J. Jacobus
  • Publication number: 20200223068
    Abstract: In an automated system and method uses a multi-axis robot arm and computer vision system to perform critical demil processes using a plurality of networked workcells monitored and managed by a central processor. An inspection and paint removal cell strips paint or other coatings from the outer surface of the ordnance for disposal of the paint or other coatings. A defusing cell is operative to remove a fuse from the ordinance for disposal of the fuse, and a cutting and definning cell operative to remove fins from the body of the ordnance, and cut into the body of the ordnance to determine if submunitions are present in the ordnance. A multi-axis robot arm and computer vision system removes submunitions from the ordnance, if present, inspecting the submunitions, and transferring the submunitions to the cutting and definning cell for subsequent processing.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 16, 2020
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, James Burkowski, Joseph Long, Gary Moody, Gary Siebert
  • Publication number: 20200118541
    Abstract: A system and method has the ability to take information from a wide variety of sources and package it in a form that a user can accesses in a conversationally intuitive manner. Task or knowledge domain-specific knowledge bases acquired from structured and free-text sources, data extracted describing world state, or natural language and spoken language knowledge are used to “intelligently” respond to an operator's or user's verbal or written request for information. In the example of a maintenance system, a user may submit status-related questions, and the system might then verbalize a list of instructions of what further diagnostic information the maintainer should acquire through tests. As the maintainer verbalizes to the system their findings, the system might narrow down its assessment of likely faults and eventually verbalize to the maintainer specific steps, and potentially images and diagrams describing the necessary corrective maintenance. Additional applications are presented in the disclosure.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Applicant: Cybernet Systems Corp.
    Inventor: Charles J. Cohen
  • Publication number: 20200057452
    Abstract: Autonomous vehicles are capable of executing missions that abide by on-street rules or regulations, while also being able to seamlessly transition to and from “zones,” including off-street zones, with their our set(s) of rules or regulations. An on-board memory stores roadgraph information. An on-board computer is operative to execute commanded driving missions using the roadgraph information, including missions with one or more zones, each zone being defined by a sub-roadgraph with its own set of zone-specific driving rules and parameters. A mission may be coordinated with one or more payload operations, including zone with “free drive paths” as in a warehouse facility with loading and unloading zones to pick up payloads and place them down, or zone staging or entry points to one or more points of payload acquisition or placement. The vehicle may be a warehousing vehicle such as a forklift.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 20, 2020
    Applicant: Cybernet Systems Corp.
    Inventors: Glenn Beach, Douglas Haanpaa, Charles J. Jacobus, Steven Rowe
  • Publication number: 20190333012
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe
  • Publication number: 20190213728
    Abstract: A machine vision system for automatically identifying and inspecting objects is disclosed, including composable vision-based recognition modules and a decision algorithm to perform the final determination on object type and quality. This vision system has been used to develop a Projectile Identification System and an Automated Tactical Ammunition Classification System. The technology can be used to create numerous other inspection and automated identification systems.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Applicant: Cybernet Systems Corp.
    Inventors: Glenn J. Beach, Gary Moody, James Burkowski, Charles J. Jacobus
  • Patent number: 10275873
    Abstract: A machine vision system for automatically identifying and inspecting objects is disclosed, including composable vision-based recognition modules and a decision algorithm to perform the final determination on object type and quality. This vision system has been used to develop a Projectile Identification System and an Automated Tactical Ammunition Classification System. The technology can be used to create numerous other inspection and automated identification systems.
    Type: Grant
    Filed: August 13, 2017
    Date of Patent: April 30, 2019
    Assignee: Cybernet Systems Corp.
    Inventors: Glenn J. Beach, Gary Moody, James Burkowski, Charles J. Jacobus
  • Publication number: 20180357601
    Abstract: A system for automated inventory management and material handling removes the requirement to operate fully automatically or all-manual using conventional vertical storage and retrieval (S&R) machines. Inventory requests to place palletized material into storage at a specified lot location or retrieve palletized material from a specified lot are resolved into missions for autonomous fork trucks, equivalent mobile platforms, or manual fork truck drivers (and their equipment) that are autonomously or manually executed to effect the request. Automated trucks plan their own movements to execute the mission over the warehouse aisles or roadways sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe
  • Patent number: 9734569
    Abstract: A machine vision system for automatically identifying and inspecting objects is disclosed, including composable vision-based recognition modules and a decision algorithm to perform the final determination on object type and quality. This vision system has been used to develop a Projectile Identification System and an Automated Tactical Ammunition Classification System. The technology can be used to create numerous other inspection and automated identification systems.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: August 15, 2017
    Assignee: Cybernet Systems Corp.
    Inventors: Glenn J. Beach, Gary Moody, James Burkowski, Charles J. Jacobus
  • Patent number: RE47108
    Abstract: A system for automated inventory management and material handling removes the requirement to operate fully automatically or all-manual using conventional vertical storage and retrieval (S&R) machines. Inventory requests to place palletized material into storage at a specified lot location or retrieve palletized material from a specified lot are resolved into missions for autonomous fork trucks, equivalent mobile platforms, or manual fork truck drivers (and their equipment) that are autonomously or manually executed to effect the request. Automated trucks plan their own movements to execute the mission over the warehouse aisles or roadways sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: October 30, 2018
    Assignee: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe