Patents Assigned to D5AI LLC
  • Publication number: 20230359860
    Abstract: Data-dependent node-to-node knowledge sharing to increase the interpretability of the activation pattern of one or more nodes in a neural network, is implemented by a set of knowledge sharing links. Each link may comprise a knowledge providing node or other source P and a knowledge receiving node R. A knowledge sharing link can impose a node-specific regularization on the knowledge receiving node R to help guide the knowledge receiving node R to have an activation pattern that is more easily interpreted. The specification and training of the knowledge sharing links may be controlled by a cooperative human-AI learning supervisor system in which a human and an artificial intelligence system work cooperatively to improve the interpretability and performance of the client system.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 9, 2023
    Applicant: D5AI LLC
    Inventors: James K. BAKER, Bradley J. BAKER
  • Patent number: 11797852
    Abstract: Computer systems and computer-implemented methods modify a machine learning network, such as a deep neural network, to introduce judgment to the network. A “combining” node is added to the network, to thereby generate a modified network, where activation of the combining node is based, at least in part, on output from a subject node of the network. The computer system then trains the modified network by, for each training data item in a set of training data, performing forward and back propagation computations through the modified network, where the backward propagation computation through the modified network comprises computing estimated partial derivatives of an error function of an objective for the network, except that the combining node selectively blocks back-propagation of estimated partial derivatives to the subject node, even though activation of the combining node is based on the activation of the subject node.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: October 24, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Patent number: 11790235
    Abstract: Computer systems and methods modify a base deep neural network (DNN). The method comprises replacing the target node of the base DNN with a compound node to thereby create a modified base DNN. The compound node comprises at least first and second nodes. The first node is trained to detect target node patterns in inputs to the first node and the second node is trained to detect an absence of the target node patterns in inputs to the second node, and the first and second nodes are trained to be non-complementary.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: October 17, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20230325668
    Abstract: Computer systems and computer-implemented methods modify a machine learning network, such as a deep neural network, to introduce judgment to the network. A “combining” node is added to the network, to thereby generate a modified network, where activation of the combining node is based, at least in part, on output from a subject node of the network. The computer system then trains the modified network by, for each training data item in a set of training data, performing forward and back propagation computations through the modified network, where the backward propagation computation through the modified network comprises computing estimated partial derivatives of an error function of an objective for the network, except that the combining node selectively blocks back-propagation of estimated partial derivatives to the subject node, even though activation of the combining node is based on the activation of the subject node.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicant: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20230289434
    Abstract: A diverse set of neural networks are trained to be individually robust against adversarial attacks and diverse in a manner that decreases the ability of an adversarial example to fool the full diverse set. The systems/methods use a diversity criterion that is specialized for measuring diversity in response to adversarial attacks rather than diversity in the classification results. Also, one or more networks can be trained that are less robust to adversarial attacks to use as a diagnostic to detect the presence of an adversarial attack. Also, node-to-node relation regularization links can be used to train diverse networks that are randomly selected from a family of diverse networks with exponentially many members.
    Type: Application
    Filed: November 16, 2021
    Publication date: September 14, 2023
    Applicant: D5AI LLC
    Inventor: James K. BAKER
  • Patent number: 11755912
    Abstract: A machine learning system includes a coach machine learning system that uses machine learning to help a student machine learning system learn its system. By monitoring the student learning system, the coach machine learning system can learn (through machine learning techniques) “hyperparameters” for the student learning system that control the machine learning process for the student learning system. The machine learning coach could also determine structural modifications for the student learning system architecture. The learning coach can also control data flow to the student learning system.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: September 12, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Patent number: 11748624
    Abstract: A system and method for controlling a nodal network. The method includes estimating an effect on the objective caused by the existence or non-existence of a direct connection between a pair of nodes and changing a structure of the nodal network based at least in part on the estimate of the effect. A nodal network includes a strict partially ordered set, a weighted directed acyclic graph, an artificial neural network, and/or a layered feed-forward neural network.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: September 5, 2023
    Assignee: D5AI LLC
    Inventors: James K. Baker, Bradley J. Baker
  • Patent number: 11741340
    Abstract: Data-dependent node-to-node knowledge sharing to increase the interpretability of the activation pattern of one or more nodes in a neural network, is implemented by a set of knowledge sharing links. Each link may comprise a knowledge providing node or other source P and a knowledge receiving node R. A knowledge sharing link can impose a node-specific regularization on the knowledge receiving node R to help guide the knowledge receiving node R to have an activation pattern that is more easily interpreted. The specification and training of the knowledge sharing links may be controlled by a cooperative human-AI learning supervisor system in which a human and an artificial intelligence system work cooperatively to improve the interpretability and performance of the client system.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: August 29, 2023
    Assignee: D5AI LLC
    Inventors: James K. Baker, Bradley J. Baker
  • Patent number: 11687788
    Abstract: Computer systems and methods generate data examples by training, through machine learning, a data generator with a training objective to produce a data example for a specific value of R, where R is value related to S1(x) and S2(x), where, for a data example, x, generated by the data generator, S1(x) is a likelihood that the data example x is in a first class of a first selected data example and S2(x) is a likelihood that the data example x is in a second class of a second selected data example. S1(x) and S2(x) are determined by a discriminator that is trained through machine learning to discriminate between the first and second classes. After training the data generator, the data generator generates a synthetic data example for each of multiple specific values of R.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: June 27, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20230196110
    Abstract: A machine learning system includes a coach machine learning system that uses machine learning to help a student machine learning system learn its system. By monitoring the student learning system, the coach machine learning system can learn (through machine learning techniques) “hyperparameters” for the student learning system that control the machine learning process for the student learning system. The machine learning coach could also determine structural modifications for the student learning system architecture. The learning coach can also control data flow to the student learning system.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Applicant: D5AI LLC
    Inventor: James K. Baker
  • Patent number: 11676026
    Abstract: Computer-implemented, machine-learning systems and methods relate to a neural network having at least two subnetworks, i.e., a first subnetwork and a second subnetwork. The systems and methods estimate the partial derivative(s) of an objective with respect to (i) an output activation of a node in first subnetwork, (ii) the input to the node, and/or (iii) the connection weights to the node. The estimated partial derivative(s) are stored in a data store and provided as input to the second subnetwork. Because the estimated partial derivative(s) are persisted in a data store, the second subnetwork has access to them even after the second subnetwork has gone through subsequent training iterations. Using this information, subnetwork 160 can compute classifications and regression functions that can help, for example, in the training of the first subnetwork.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: June 13, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20230142528
    Abstract: Computer systems and methods modify a base deep neural network (DNN). The method comprises replacing the target node of the base DNN with a compound node to thereby create a modified base DNN. The compound node comprises at least first and second nodes. The first node is trained to detect target node patterns in inputs to the first node and the second node is trained to detect an absence of the target node patterns in inputs to the second node, and the first and second nodes are trained to be non-complementary.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 11, 2023
    Applicant: D5AI LLC
    Inventor: James K. Baker
  • Patent number: 11615315
    Abstract: A machine learning system includes a coach machine learning system that uses machine learning to help a student machine learning system learn its system. By monitoring the student learning system, the coach machine learning system can learn (through machine learning techniques) “hyperparameters” for the student learning system that control the machine learning process for the student learning system. The machine learning coach could also determine structural modifications for the student learning system architecture. The learning coach can also control data flow to the student learning system.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: March 28, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Patent number: 11610130
    Abstract: A machine learning system includes a coach machine learning system that uses machine learning to help a student machine learning system learn its system. By monitoring the student learning system, the coach machine learning system can learn (through machine learning techniques) “hyperparameters” for the student learning system that control the machine learning process for the student learning system. The machine learning coach could also determine structural modifications for the student learning system architecture. The learning coach can also control data flow to the student learning system.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: March 21, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20230072844
    Abstract: Data-dependent node-to-node knowledge sharing to increase the interpretability of the activation pattern of one or more nodes in a neural network, is implemented by a set of knowledge sharing links. Each link may comprise a knowledge providing node or other source P and a knowledge receiving node R. A knowledge sharing link can impose a node-specific regularization on the knowledge receiving node R to help guide the knowledge receiving node R to have an activation pattern that is more easily interpreted. The specification and training of the knowledge sharing links may be controlled by a cooperative human-AI learning supervisor system in which a human and an artificial intelligence system work cooperatively to improve the interpretability and performance of the client system.
    Type: Application
    Filed: April 13, 2020
    Publication date: March 9, 2023
    Applicant: D5AI LLC
    Inventors: James K. BAKER, Bradley J. BAKER
  • Patent number: 11562246
    Abstract: Methods and computer systems improve a trained base deep neural network by structurally changing the base deep neural network to create an updated deep neural network, such that the updated deep neural network has no degradation in performance relative to the base deep neural network on the training data. The updated deep neural network is subsequently training. Also, an asynchronous agent for use in a machine learning system comprises a second machine learning system ML2 that is to be trained to perform some machine learning task. The asynchronous agent further comprises a learning coach LC and an optional data selector machine learning system DS. The purpose of the data selection machine learning system DS is to make the second stage machine learning system ML2 more efficient in its learning (by selecting a set of training data that is smaller but sufficient) and/or more effective (by selecting a set of training data that is focused on an important task).
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: January 24, 2023
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Patent number: 11531900
    Abstract: Computer systems and methods cooperatively train multiple generators and a classifier. Cooperative training includes: training, through machine learning, the multiple generators such that each generator is trained according to a first objective to output examples of a designated classification category; training, through machine learning, the classifier to determine, for each generated by the multiple generators, which of the multiple generators generated the example; and back-propagating partial derivatives of an error cost function from the classifier to the multiple generators.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: December 20, 2022
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20220383131
    Abstract: Computer systems and methods generate data examples by training, through machine learning, a data generator with a training objective to produce a data example for a specific value of R, where R is value related to S1(x) and S2(x), where, for a data example, x, generated by the data generator, S1(x) is a likelihood that the data example x is in a first class of a first selected data example and S2(x) is a likelihood that the data example x is in a second class of a second selected data example. S1(x) and S2(x) are determined by a discriminator that is trained through machine learning to discriminate between the first and second classes. After training the data generator, the data generator generates a synthetic data example for each of multiple specific values of R.
    Type: Application
    Filed: July 28, 2022
    Publication date: December 1, 2022
    Applicant: D5AI LLC
    Inventor: James K. BAKER
  • Patent number: 11501164
    Abstract: Systems and methods analyze training of a first machine learning system with a second machine learning system. The first machine learning system comprises a neural network with a first inner layer node. The method includes connecting the first machine learning system to an input of the second machine learning system. The second machine learning system comprises a second objective function for analyzing an internal characteristic of the first machine learning system and which is different from a first objective function for the first machine learning system.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: November 15, 2022
    Assignee: D5AI LLC
    Inventor: James K. Baker
  • Publication number: 20220335305
    Abstract: Computer systems and methods cooperatively train multiple generators and a classifier. Cooperative training includes: training, through machine learning, the multiple generators such that each generator is trained according to a first objective to output examples of a designated classification category; training, through machine learning, the classifier to determine, for each generated by the multiple generators, which of the multiple generators generated the example; and back-propagating partial derivatives of an error cost function from the classifier to the multiple generators.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Applicant: D5AI LLC
    Inventor: James K. BAKER