Abstract: Provided is an alumina-based composite oxide having a large initial specific surface area and a small initial mean pore size, with excellent heat resistance of the specific surface area and pore volume; and a production method therefor. Specifically, provided is an alumina-based composite oxide wherein the initial crystallite diameter is 10 nm or less and the initial specific surface area is 80 m2/ml or more; after calcination at 1200° C. for 3 hours in air, the specific surface area is 10 m2/ml or more; the initial mean pore size is 10 nm or more and 50 nm or less; and after calcination at 1200° C. for 3 hours in air, the pore volume retention rate is 10% or more, which is determined by (P1/P0)×100 wherein P0 represents an initial pore volume (ml/g), and P1 represents a pore volume (ml/g) after calcination at 1200° C. for 3 hours in air.
Abstract: Provided is a zirconium composite oxide containing 5 mass % to 50 mass % yttrium oxide and cerium oxide, the specific surface area after 10 hours of heating at 1250° C. being 3.0 m2/g to 20.0 m2/g.
Abstract: A zirconia-based porous body including an oxide of a rare earth element, in which when a pore volume in a pore distribution range of 30 nm or more and 200 nm or less after heating at 1150° C. for 12 hours under atmospheric pressure is defined as pore volume A and a pore volume in a pore distribution range of 30 nm or more and 200 nm or less before heating is defined as pore volume B, the pore volume A is 0.10 ml/g or more and 0.40 ml/g or less, and a pore volume retention ratio X in a pore distribution range of 30 nm or more and 200 nm or less represented by a formula [[(pore volume A)/(pore volume B)]×100] is 25% or more and 95% or less.
Abstract: The purpose of the present invention is to provide a zirconia-based porous body which can be pulverized in a relatively short time and in which performance deterioration caused by pulverization is suppressed. The present invention pertains to a zirconia-based porous body in which the total pore volume is at least 1.0 ml/g, the pore volume of pores having a diameter of 20-100 nm (exclusive of 100) is at most 0.3 ml/g, and the pore volume of pores having a diameter of 100-1000 nm is at least 0.5 ml/g.
Abstract: Provided is a stabilized zirconia sintered body which comprises a fluorescent agent containing zirconium and titanium, and shows fluorescence when irradiated with light including light of a wavelength of 250 nm to 380 nm.
Abstract: A non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode containing a positive electrode active material, a negative electrode, and a non-aqueous electrolyte, and the positive electrode active material includes a positive electrode active material particle containing a lithium transition metal compound, and a coating portion coating at least a part of a surface of the positive electrode active material particle. The coating portion contains a lithium ionic conductor containing lithium, a phosphoric acid group, and at least one element of lanthanum (La) and cerium (Ce).
Abstract: A zirconia-based porous body including an oxide of a rare earth element, in which when a pore volume in a pore distribution range of 30 nm or more and 200 nm or less after heating at 1150° C. for 12 hours under atmospheric pressure is defined as pore volume A and a pore volume in a pore distribution range of 30 nm or more and 200 nm or less before heating is defined as pore volume B, the pore volume A is 0.10 ml/g or more and 0.40 ml/g or less, and a pore volume retention ratio X in a pore distribution range of 30 nm or more and 200 nm or less represented by a formula [[(pore volume A)/(pore volume B)]×100] is 25% or more and 95% or less.
Abstract: A ceramic powder material containing: a first garnet-type compound containing Li, La, and Zr; and a second garnet-type compound containing Li, La, and Zr and having a composition different from a composition of the first garnet-type compound, in which the first garnet-type compound and the second garnet-type compound are represented by Formula [1] Li7-(3x+y)M1xLa3Zr2-yM2yO12, where M1 is Al or Ga, M2 is Nb or Ta, the first garnet-type compound satisfies 0?(3x+y)?0.5, and the second garnet-type compound satisfies 0.5<(3x+y)?1.5.
Abstract: To provide an unprecedented novel zirconium phosphate. A zirconium phosphate represented by Formula [1]: Zr(Ha(NH4)b(PO4))(HPO4).nH2O, wherein Ia/Ib is 1.0 or less where the maximum peak intensity in the range of 2?=5 to 13° measured by the X-ray diffraction method is denoted by Ia and the maximum peak intensity in the range of 2?=26 to 28° is denoted by Ib, and in Formula [1], a, b, and c are numbers satisfying a+b=1 and 0?b<1, and n is a number satisfying 0?n?2.
Abstract: A ceramic powder material containing a garnet-type compound containing Li, wherein the ceramic powder material has a pore volume of 0.4 mL/g or more and 1.0 mL/g or less.
Abstract: A zirconia powder containing a stabilizer, and having a specific surface area of 20 m2/g or more and 60 m2/g or less and a particle diameter D50 of 0.1 ?m or more and 0.7 ?m or less, in which in a range of 10 nm or more and 200 nm or less in a pore distribution based on a mercury intrusion method, a peak top diameter in a pore volume distribution is 20 nm or more and 85 nm or less, a pore volume is 0.2 ml/g or more and less than 0.5 ml/g, and a pore distribution width is 40 nm or more and 105 nm or less.
Abstract: A non aqueous electrolyte secondary battery includes a positive electrode containing a positive electrode active material, a negative electrode, and a non aqueous electrolyte, and the positive electrode active material includes a positive electrode active material particle containing a lithium transition metal compound, and a coating portion coating at least a part of a surface of the positive electrode active material particle. The coating portion contains a lithium ionic conductor containing lithium, a phosphoric acid group, and yttrium. The lithium ionic conductor includes a region A in which a ratio of yttrium is relatively rich and a region B in which the ratio of yttrium is relatively poor.
Abstract: Provided are a zirconia sol having a transmittance of 45% or more at a wavelength of 400 nm, having a transmittance of 75% or more at a wavelength of 550 nm, and containing zirconia particles in an amount of 20 wt % or more, and a method for manufacturing the zirconia sol.
Abstract: The present invention provides a scandia-stabilized zirconia powder for solid oxide fuel cells or a scandia-stabilized zirconia sintered body for solid oxide fuel cells, each having high crystal structure stability, low grain-boundary resistivity, and high ionic conductivity; and the production methods of these. The scandia-stabilized zirconia powder for solid oxide fuel cells comprises a compound represented by formula (1): (ZrO2)1-x-a(Sc2O3)x(Al2O3)a. In formula (1), 0.09?x?0.11 and 0.002?a<0.01 are satisfied. The scandia-stabilized zirconia powder has a rhombohedral phase crystal structure. The sintered body of the scandia-stabilized zirconia powder has a cubic phase crystal structure. The sintered body of the scandia-stabilized zirconia powder has a grain-boundary resistivity of 12 ?·cm or less at 550° C.
Abstract: A zirconium phosphate represented by M1Zr2(M2PO4)a(PO4)b.nH2O (M1 and M2 are monovalent cations, and may be the same or different from each other; a and b are numbers satisfying 0.3<a?1.8, 3.1?(a+b)?3.6, and 2a+3b=9; and n is a number satisfying 0?n?2.).
Abstract: The purpose of the present invention is to provide a zirconia-based composite oxide for making it possible to form a catalyst layer which, despite having a reduced thickness, has a sufficient quantity of catalyst to function in exhaust gas treatment on a wall of a honeycomb structure. The purpose of the present invention is also to provide a method for manufacturing said zirconia-based composite oxide. The present invention relates to a zirconia-based composite oxide characterized in that the tap bulk density thereof is 0.75 g/mL or greater, and the specific surface area thereof after heat treatment for three hours at 1000° C. is 45 m2/g or greater.
Abstract: A ceramic powder material which contains an LLZ-based garnet-type compound represented by Li7?3xAlxLa3Zr2O12 (where x satisfies 0?x?0.3) and in which a main phase of a crystal phase undergoes phase transition from a tetragonal phase to a cubic phase in the process of raising a temperature from 25° C. to 1050° C. and the main phase is the cubic phase even after the temperature is lowered to 25° C.