Patents Assigned to DAIKIN APPLIED AMERICAS INC.
  • Patent number: 11965672
    Abstract: A heat pump system includes a compressor, a usage side heat exchanger, a heat source side heat exchanger, an expansion mechanism, a main refrigerant flow control valve switchable between cooling and heating modes, a gas reheat heat exchanger, a fan, and a secondary refrigerant flow control device switchable between first, second, and third modes. Refrigerant flows from the compressor discharge line to the main refrigerant flow control device in the first mode. Refrigerant flows from discharge line to gas reheat heat exchanger and then main refrigerant flow control valve in the second mode. Refrigerant flows both from discharge line to gas reheat heat exchanger and then main refrigerant flow control valve, and from discharge line to main refrigerant flow control valve without flowing through the gas reheat heat exchanger in the third mode. Refrigerant flows to the usage side and hot gas reheat heat exchanger in the heating mode.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: April 23, 2024
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Marcos Locke, Benny DiMarco
  • Patent number: 11668491
    Abstract: A thermally broken panel assembly includes a first panel member, a second panel member, a first insulating member, and a second insulating member. The first panel member includes a first base member, a first wall extending outwardly from an outer edge of the first base member, and a first flange extending inwardly from an upper end of the first wall. The first insulating member is disposed between the first wall of the first panel member and a third wall of the second panel member. The second insulating member is disposed between the first base member of the first panel member and a second base member of the second panel member. A gap is disposed between an inner edge of the first flange of the first panel member and a second wall of the second panel member in an extension direction of the first flange.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 6, 2023
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Spencer Nord, Brent Johnski, Jeremy Small
  • Patent number: 11624518
    Abstract: A method of conditioning air includes controlling a secondary refrigerant flow control valve to select between a first mode in which refrigerant flows from a discharge line to a main refrigerant flow control valve, and a second mode in which refrigerant flows from the discharge line to a gas reheat heat exchanger and then flows to the main refrigerant flow control valve. A heat transfer medium flow control valve is controlled to adjust the flow of the heat transfer medium into a heat source side heat exchanger. The heat transfer medium flow control valve allows the heat transfer medium to flow to the heat source side heat exchanger when the secondary refrigerant flow control valve is in the first mode, and adjusts the flow of the heat transfer medium to the heat source side heat exchanger when the secondary refrigerant flow control valve is in the second mode.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: April 11, 2023
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Marcos Locke, Benny DiMarco
  • Patent number: 11378290
    Abstract: A heat pump system includes a compressor, a usage side heat exchanger, a heat source side heat exchanger, an expansion mechanism, a main refrigerant flow control device switchable between cooling and heating modes, a gas reheat heat exchanger, a fan, and a secondary refrigerant flow control device switchable between first, second, and third modes. Refrigerant flows from the compressor discharge line to the main refrigerant flow control device in the first mode. Refrigerant flows from discharge line to gas reheat heat exchanger and then main refrigerant flow control device in the second mode. Refrigerant flows both from discharge line to gas reheat heat exchanger and then main refrigerant flow control device, and from discharge line to main refrigerant flow control device without flowing through the gas reheat heat exchanger in the third mode. Refrigerant may flow to the usage side and hot gas reheat heat exchanger in the heating mode.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 5, 2022
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Marcos Locke, Benny DiMarco
  • Publication number: 20210333021
    Abstract: A heat transport system includes: a refrigerant circuit that seals therein a fluid including HFC-32 and/or HFO refrigerant as a refrigerant and that includes: a refrigerant booster that boosts the refrigerant; an outdoor air heat exchanger that exchanges heat between the refrigerant and outdoor air; a medium heat exchanger that exchanges heat between the refrigerant and a heat transfer medium; and a refrigerant flow path switch that switches between a refrigerant radiation state and a refrigerant evaporation state; and a medium circuit that seals carbon dioxide therein as the heat transfer medium.
    Type: Application
    Filed: June 19, 2018
    Publication date: October 28, 2021
    Applicants: DAIKIN INDUSTRIES, LTD., Daikin Applied Americas Inc.
    Inventors: Hiromune Matsuoka, Ryuusuke Fujiyoshi, Kyou Tomikawa, Yoshihiko Hagiwara
  • Patent number: 11105558
    Abstract: A heat exchanger includes a shell, refrigerant distributor, tube bundle, and a first baffle. The shell has a refrigerant inlet through which at least refrigerant with liquid refrigerant flows and a shell refrigerant vapor outlet. A longitudinal center axis of the shell extends substantially parallel to a horizontal plane. The refrigerant distributor fluidly communicates with the refrigerant inlet and is disposed within the shell. The refrigerant distributor has at least one liquid refrigerant distribution opening that distributes liquid refrigerant. The tube bundle is disposed inside of the shell below the refrigerant distributor. The first baffle extends from a first lateral side of the shell. The first baffle is vertically disposed 5% to 40% of an overall height of the shell above a bottom edge of the shell, and extends laterally inwardly from the first lateral side by a distance not more than 20% of a width of the shell.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 31, 2021
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Michael J. Wilson, Robert Page, Louis A. Moreaux, Jeffrey Stamp, Satoshi Inoue, Shannon Cobb
  • Patent number: 11029094
    Abstract: A heat exchanger includes a shell, a refrigerant distributor, tube bundle, and first baffle. The shell has a refrigerant inlet through which at least refrigerant with liquid refrigerant flows and a shell refrigerant vapor outlet. A longitudinal center axis of the shell extends substantially parallel to a horizontal plane. The refrigerant distributor fluidly communicates with the refrigerant inlet and is disposed within the shell. The refrigerant distributor has at least one liquid refrigerant distribution opening that distributes liquid refrigerant. The tube bundle is disposed inside of the shell below the refrigerant distributor. The first baffle extends downwardly from the refrigerant distributor at a top of the tube bundle to at least partially vertically overlap the top of the tube bundle. The first baffle is disposed laterally outwardly of the tube bundle toward a first lateral side of the shell.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 8, 2021
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Michael J. Wilson, Robert Page, Louis A. Moreaux, Jeffrey Stamp, Satoshi Inoue, Shannon Cobb
  • Patent number: 11002452
    Abstract: A heat pump system includes a compressor, usage side heat exchanger, heat source side heat exchanger, expansion mechanism, main refrigerant flow control device switchable between cooling and heating modes, gas reheat heat exchanger connected in the refrigerant circuit, a fan disposed to direct an airflow across the usage side heat exchanger and the gas reheat heat exchanger into a target space, and a secondary refrigerant flow control device switchable between first and second modes. Refrigerant flows from the discharge line to the main refrigerant flow control device in the heating mode and the cooling mode in the first mode. Refrigerant flows from the discharge line to the gas reheat heat exchanger in a gas reheat mode and then flows to the main refrigerant flow control device in the second mode. A flow of the heat transfer medium to the heat source side heat exchanger is adjustable.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 11, 2021
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Marcos Locke, Benny DiMarco
  • Patent number: 10845125
    Abstract: A heat exchanger includes a shell, refrigerant distributor, tube bundle, and first upper baffle. The shell has a refrigerant inlet through which at least refrigerant with liquid refrigerant flows and a shell refrigerant vapor outlet. A longitudinal center axis of the shell extends substantially parallel to a horizontal plane. The refrigerant distributor fluidly communicates with the refrigerant inlet and is disposed within the shell. The refrigerant distributor has at least one liquid refrigerant distribution opening that distributes liquid refrigerant. The tube bundle is disposed inside of the shell below the refrigerant distributor so that the liquid refrigerant discharged from the refrigerant distributor is supplied to the tube bundle. The first upper baffle is vertically disposed at a top of the tube bundle. The first upper baffle extends laterally outwardly from the tube bundle toward a first lateral side of the shell.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 24, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Michael J. Wilson, Robert Page, Louis A. Moreaux, Jeffrey Stamp, Satoshi Inoue, Shannon Cobb
  • Patent number: 10794619
    Abstract: A compressor includes a compression mechanism, a shaft, a motor, and a cooling medium delivery structure. The motor includes a rotor mounted on the shaft and a stator disposed radially outwardly of the rotor to form a gap between the rotor and the stator. The cooling medium delivery structure includes inlet and outlet conduits located to supply and discharge a cooling medium to and from the motor. The shaft has an external shape different than an internal shape of the rotor to form at least one axial passageway between the shaft and the rotor. The cooling medium is supplied through the gap and the at least one axial passageway to cool the rotor.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: October 6, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Joseph Layton Knopp, Jeffrey Allen Morgan, Ronald J. Formosa, Jr.
  • Patent number: 10746441
    Abstract: A heat exchanger includes a shell, a refrigerant distributor, and a heat transferring unit. The shell has a refrigerant inlet through which at least refrigerant with liquid refrigerant flows and a shell refrigerant vapor outlet. A longitudinal center axis of the shell extends generally parallel to a horizontal plane. The refrigerant distributor is connected to the refrigerant inlet and disposed within the shell. The refrigerant distributor has at least one liquid refrigerant distribution opening that distributes liquid refrigerant and a refrigerant vapor distribution outlet opening longitudinally spaced from the shell refrigerant vapor outlet. The heat transferring unit is disposed inside of the shell below the refrigerant distributor so that the liquid refrigerant discharged from the refrigerant distributor is supplied to the heat transferring unit.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 18, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Mitsuharu Numata, Michael Wilson, Jeffrey Majkowski
  • Patent number: 10724546
    Abstract: A centrifugal compressor includes a casing, a first impeller, a motor, a cooling medium delivery structure, a shaft, and a first bearing. The casing has a first inlet portion and a first outlet portion. The first impeller is attached to the shaft and disposed between the first inlet portion and the first outlet portion. A first axial gap exists between the first impeller and the casing. The shaft is rotatably supported and axially moveable with respect to the casing by the first bearing. The motor is arranged inside the casing to rotate the shaft. The cooling medium delivery structure is configured to vary a supply of a cooling medium to the casing. An impeller clearance control apparatus for a centrifugal compressor includes a sensor and a controller. The controller controls a supply of a cooling medium to the casing based on a value detected by the sensor.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: July 28, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Jeffrey Allen Morgan, Fumiaki Onodera, Tsuyoshi Ueda
  • Patent number: 10634154
    Abstract: A centrifugal compressor includes a casing, an impeller, a motor, a diffuser, a magnetic bearing, and a magnetic bearing backup system including at least one dynamic gas bearing and at least one hydrostatic gas bearing. The impeller is attached to a shaft rotatable about a rotation axis. The motor is configured and arranged to rotate the shaft in order to rotate the impeller. The magnetic bearing rotatably supports the shaft. The magnetic bearing backup system is configured and arranged to support the shaft when the magnetic bearing stops operating. The at least one dynamic gas bearing and the at least one hydrostatic gas bearing of the magnetic bearing backup system are disposed radially inwardly relative to the magnetic bearing.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: April 28, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Jeffrey Allen Morgan, Fumiaki Onodera, Tsuyoshi Ueda
  • Patent number: 10612859
    Abstract: A heat exchanger is adapted to be used in a vapor compression system. The tube bundle includes a plurality of heat transfer tubes in a falling film region and in an accumulating region. The heat transfer tubes in the falling film region are arranged in a plurality of columns extending parallel to each other. The heat transfer tubes in the accumulating region are arranged in a plurality of rows extending parallel to each other. A trough part includes a plurality of trough sections disposed respectively below the rows of the heat transfer tubes in the accumulating region to accumulate the refrigerant therein. A ratio between a number of rows of the heat transfer tubes in the accumulating region and a number of the heat transfer tubes in each of the columns in the falling film region is about 1:9 to about 2:8.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: April 7, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Mitsuharu Numata, Kazushige Kasai
  • Patent number: 10612823
    Abstract: A condenser for a vapor compression system includes a shell and a tube bundle. The shell has a refrigerant inlet and a refrigerant outlet. The tube bundle includes a plurality of heat transfer tubes disposed inside the shell. Refrigerant discharged from the refrigerant inlet is supplied onto the tube bundle. The heat transfer tubes extend generally parallel to the longitudinal center axis of the shell. The heat transfer tubes are arranged to form a first vapor passage extending generally vertically along a first passage lengthwise direction through at least some of the heat transfer tubes. The first vapor passage has a first minimum width measured perpendicularly relative to the first passage lengthwise direction and the longitudinal axis. The first minimum width is larger than a tube diameter of the heat transfer tubes, and the first minimum width is smaller than four times the tube diameter.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 7, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventor: Louis A. Moreaux
  • Patent number: 10563673
    Abstract: A centrifugal compressor for a chiller includes a casing, an inlet guide vane, an impeller downstream of the inlet guide vane, a motor and a diffuser. The casing has inlet and outlet portions with the inlet guide vane disposed in the inlet portion. The impeller is rotatable about a rotation axis defining an axial direction. A liquid injection passage is provided to inject liquid refrigerant into an area between the impeller and the diffuser. The motor rotates the impeller. The diffuser is disposed in the outlet portion downstream from the impeller with an outlet port of the liquid injection passage being disposed between the impeller and the diffuser. A controller is programmed to control an amount of the liquid refrigerant injected into the area between the impeller and the diffuser.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: February 18, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Nobuhiro Umeda, Md Anwar Hossain, Takatoshi Takigawa
  • Patent number: 10539350
    Abstract: An economizer includes a separation wheel, a motor, and a liquid storage portion. The separation wheel is arranged and configured to separate refrigerant into gas refrigerant and liquid refrigerant. The separation wheel is attached to a shaft rotatable about a rotation axis. The motor is arranged and configured to rotate the shaft in order to rotate the separation wheel. The liquid storage portion is arranged and configured to store the liquid refrigerant. The economizer is adapted to be used in a chiller system including a compressor, an evaporator and a condenser.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: January 21, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Joseph Knopp, Naomasa Miki, Paul Johnson
  • Patent number: 10539353
    Abstract: A refrigerating apparatus includes a centrifugal compressor, suction and discharge capacity control mechanisms that control capacity of the compressor by changing opening degrees of the suction and discharge capacity control mechanisms, and a controller that compares a compressor-specific surge curve with an isentropic head to perform rotational speed control of the compressor, rotational speed adjustment control of the compressor in order to avoid surge, and emergency shutdown control of the compressor upon detection of surge. The compressor-specific surge curve is stored in the controller in advance, and is defined by an actual rotational speed of the compressor and opening degrees of the suction and discharge capacity control mechanisms. The isentropic head is calculated based on a suction pressure, a discharge pressure, and a suction temperature during operation.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 21, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventors: Nobuhiro Umeda, Takatoshi Takigawa, Fumiaki Onodera, Nobutoshi Kozono
  • Patent number: 10533568
    Abstract: A centrifugal compressor to be used in a chiller system includes a casing, an impeller, a motor and a diffuser. The casing has an inlet portion and an outlet portion. The impeller is attached to a shaft rotatable about a rotation axis, and has an impeller shroud which encloses the impeller. The motor rotates the shaft in order to rotate the impeller. The diffuser is disposed in the outlet portion downstream of the impeller. The centrifugal compressor further includes a seal bearing. The seal bearing is attached to the inlet portion to seal the impeller shroud, and rotatably supports the impeller and the shaft.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: January 14, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventor: Vladislav Goldenberg
  • Patent number: 10533778
    Abstract: A turbo economizer adapted to be used in a chiller system includes a nozzle, a turbine, and an economizer impeller. The nozzle introduces refrigerant into the turbo economizer. The turbine is disposed downstream of the nozzle, and the turbine is attached to a shaft rotatable about a rotation axis. A flow of the refrigerant introduced through the nozzle drives the turbine to rotate the shaft. The economizer impeller is attached to the shaft so as to be rotated in accordance with rotation of the shaft. In the turbo economizer, the nozzle reduces a pressure of the refrigerant such that a pressure of the refrigerant entering the turbo economizer is lower than a predetermined pressure, at least some of the refrigerant passes through the nozzle is introduced into the economizer impeller, and the economizer impeller increases a pressure of the refrigerant introduced thereinto to the predetermined pressure.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: January 14, 2020
    Assignee: DAIKIN APPLIED AMERICAS INC.
    Inventor: Jeffrey Allen Morgan