Patents Assigned to Daimler AG
  • Publication number: 20090118971
    Abstract: An engine is coupled to an input member of a hybrid transmission and the hybrid transmission is operative to transfer torque between the input member and a torque machine and an output member to generate an output torque in response to an operator torque request. The torque machine is connected to an energy storage device. A method for controlling the engine includes determining a preferred input torque from the engine to the hybrid transmission based upon operator inputs to an accelerator pedal and a brake pedal, determining maximum and minimum allowable input torques from the engine to the hybrid transmission, controlling the engine at the preferred input torque when the preferred input torque is within the maximum and minimum allowable input torques, and controlling the engine based upon the maximum and minimum allowable input torques when the preferred input torque is outside one of the maximum and minimum allowable input torques.
    Type: Application
    Filed: October 21, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Wilfried Brunssen
  • Publication number: 20090115365
    Abstract: A method to determine a limit torque associated with an electro-mechanical transmission includes determining electric motor torque constraints and battery power constraints. A limit torque function and a standard form of the limit torque function are determined. The limit torque function and the motor torque constraints and the battery power constraints are transposed to the standard form to determine a limit torque.
    Type: Application
    Filed: September 27, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Tung-Ming Hsieh
  • Publication number: 20090118084
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring a desired transmission shift including an oncoming clutch, monitoring operational parameters of the powertrain, monitoring a maximum electric machine torque capacity, determining a desired output torque profile through the desired transmission shift, determining a maximum electric machine torque capability profile through the desired transmission shift based upon the maximum electric machine torque capacity and the operational parameters, comparing the desired output torque profile to the maximum electric machine torque capability profile, determining a preferred oncoming clutch torque profile through the desired transmission shift based upon the comparing, and executing a clutch assisted shift based upon the preferred oncoming clutch torque profile.
    Type: Application
    Filed: October 14, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah
  • Publication number: 20090118086
    Abstract: A powertrain includes an electromechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member. A method for controlling the powertrain includes commanding a shift from a first operating range state to a second operating range state, identifying an off-going clutch, controlling torque output from said electric machine to offload reactive torque transmitted through said off-going clutch, selectively applying an oncoming clutch to offload reactive torque transmitted through said off-going clutch, and reducing a clutch torque capacity of said off-going clutch when said reactive torque transmitted through said off-going clutch is substantially zero.
    Type: Application
    Filed: October 15, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah
  • Publication number: 20090118090
    Abstract: An internal combustion engine is connected to a transmission to transmit tractive power to a driveline. Engine coolant temperature is determined, and power output of the engine is adjusted based upon the coolant temperature and preferred coolant temperature range. The transmission is controlled to transmit tractive power to the driveline to meet an operator torque request based upon the adjusted power output of the engine.
    Type: Application
    Filed: September 19, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, John L. Lahti
  • Publication number: 20090118942
    Abstract: A hybrid transmission includes torque machines and an energy storage device connected thereto. Thee hybrid transmission is operative to transfer power between an input member and an output member and the torque machines. A method for controlling the hybrid transmission includes monitoring operating parameters of the hybrid transmission, monitoring an operator demand for power, determining an output torque range to the output member based upon states of the operating parameters of the hybrid transmission, constraining the output torque range to the output member based upon the operator demand for power, and determining input torque constraints to the input member based upon the constrained output torque range to the output member.
    Type: Application
    Filed: October 21, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Tung-Ming Hsieh, Anthony H. Heap
  • Publication number: 20090118945
    Abstract: A hybrid powertrain system includes a transmission device operative to transfer power between an input member, a torque machine and an output member, the output member coupled to a driveline coupled to a wheel to transfer tractive torque therebetween. A method for controlling the hybrid powertrain system includes monitoring an operator torque request, determining an operating range state of the transmission device, determining a net output torque to the output member based upon the operator torque request, determining a lash state of the driveline, and determining a command for transferring output torque to the output member based upon the operating range state of the transmission device, the net output torque, and the lash state of the driveline.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jason J. McConnell, Seamus T. McGrath, Robert L. Morris
  • Publication number: 20090118969
    Abstract: An internal combustion engine is controlled to achieve a preferred temperature of the exhaust aftertreatment system and to minimize a total engine energy loss. A transmission is controlled to achieve a torque output based upon the preferred engine operation.
    Type: Application
    Filed: September 19, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, John L. Lahti
  • Publication number: 20090115349
    Abstract: An electro-mechanical transmission is operative to transmit mechanical torque originating from an engine and first and second electric machines to an output member. The electric machines are electrically-operatively connected to an energy storage system for electrical power flow therebetween. A Method for operating the electro-mechanical transmission includes operating the electro-mechanical transmission in a fixed gear operating range state, determining a minimum power flow between the energy storage system and the first and second electric machines to meet an operator torque request based upon electrical power constraints and motor torque constraints, commanding a motor torque from the first electric machine based upon the minimum power flow, and commanding a motor torque from the second electric machine based upon the minimum power flow, a torque input from the engine and the commanded motor torque from the first electric machine to meet the operator torque request in the fixed gear operating range state.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventor: Anthony H. Heap
  • Publication number: 20090115353
    Abstract: A hybrid transmission is operative to transfer power between an input member and first and second torque machines and an output member in a fixed gear operating range state. The first and second torque machines are connected to an energy storage device.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: ANTHONY H. HEAP, TUNG-MING HSIEH
  • Publication number: 20090118093
    Abstract: An engine is mechanically coupled to a transmission device, the transmission device operative to transfer mechanical power between the engine and a second power generating device and an output member. A method for controlling the engine includes monitoring an operator demand for power, selecting a preferred engine state, determining a preferred engine torque input to the transmission device when operating in the preferred engine state based upon the operator demand for power, determining constraints on the engine torque input to the transmission device based upon a capacity of the transmission device to react the engine torque input, and commanding operation of the engine to the preferred engine state and commanding the engine torque input to the transmission device based upon the preferred engine torque input and the constraints on the engine torque input.
    Type: Application
    Filed: October 15, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPRATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Wilfried Brunssen
  • Publication number: 20090118079
    Abstract: A method for controlling a powertrain system includes monitoring voltage of an energy storage device. The method further includes modifying a preferred voltage limit when the voltage of the energy storage device transgresses a trigger voltage limit, and determining the power constraint of a first power actuator based on the estimated output power of the energy storage device when the voltage of the energy storage device transgresses the preferred voltage limit.
    Type: Application
    Filed: October 1, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: ANTHONY H. HEAP, WILFRIED BRUNSSEN
  • Publication number: 20090118083
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring a rotational speed of the engine, monitoring a temperature of a transmission fluid, determining a maximum hydraulic pressure within a hydraulic control system based upon the rotational speed of the engine and the temperature of the transmission fluid, determining a predicted clutch torque capacity based upon the maximum hydraulic pressure, generating a preferred input torque from the engine based upon the predicted clutch torque capacity, and utilizing the preferred input torque to control the engine.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Anthony H. Heap, Jy-Jen F. Sah
  • Publication number: 20090118885
    Abstract: An engine and a second power generating device transmit power through a transmission to a driveline to a wheel. A control module determines a regenerative braking axle torque capacity and a regenerative braking torque. Power output from the second power generating device is controlled based upon a regenerative braking axle torque request. A brake control module determines a total braking torque request and generates the regenerative braking axle torque request based upon the total braking torque request, the regenerative braking axle torque capacity, and the regenerative braking torque. The brake control module controls a friction brake.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, William R. Cawthorne, Seamus T. Mcgrath, Timothy M. Karnjate, William K. Manosh
  • Publication number: 20090118902
    Abstract: An operator control method for a vehicle having at least one switch which, when operated, activates an associated application or application group, where a stored last state or a prescribed basic state for the associated application or application group is set and is shown on a screen display, and to an associated operator control system. The identified operation of the switch is followed by activation of the associated application or application group, and setting a stored menu state for the purpose of operator control when the associated application or application group has been deactivated.
    Type: Application
    Filed: June 28, 2006
    Publication date: May 7, 2009
    Applicant: Daimler AG
    Inventors: Metta Boger, Tanja Schilling
  • Publication number: 20090118920
    Abstract: A method for operating a vehicle includes determining a transmission input speed, operating the transmission using the transmission input speed, and providing a braking torque request to cause braking of the vehicle according to a scheme selected from the group consisting of a first braking mode and a second braking mode. The transmission input speed and the transmission operating range state are dependent on said braking torque request in the first braking mode, and wherein the transmission operating state, but not the transmission input speed, is dependent on the braking torque request in the second braking mode.
    Type: Application
    Filed: September 20, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim
  • Publication number: 20090118923
    Abstract: A method for controlling a powertrain system includes monitoring an operator torque request, selecting a candidate powertrain system operating point, and determining a preferred engine torque range, a preferred torque machine torque range, and a preferred energy storage device output power range. The method further includes determining an engine torque, a torque machine torque, and an energy storage device output power based upon the operator torque request and the candidate powertrain system operating point. Power costs for operating the powertrain at the candidate powertrain system operating point are determined based on the determined engine torque, the determined torque machine torque, and the determined energy storage device output power range. Penalty costs are determined relative to the preferred engine torque range, the preferred torque machine torque range, and the preferred energy storage device output power range for operating the powertrain at the candidate powertrain system operating point.
    Type: Application
    Filed: September 23, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim
  • Publication number: 20090118948
    Abstract: A powertrain system includes an engine mechanically coupled to an electro-mechanical transmission selectively operative in one of a plurality of transmission operating range states and one of a plurality of engine states. A method for controlling the powertrain system includes determining a current transmission operating range state and engine state, determining at least one potential transmission operating range state and engine state, providing an operator torque request, determining preferability factors associated with the current transmission operating range state and engine state, and potential transmission operating range states and engine states, preferentially weighting the preferability factors for the current transmission operating range state and engine state, and selectively commanding changing the current transmission operating range state and engine state based upon the preferability factors and the operator torque request.
    Type: Application
    Filed: September 24, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim, Jason J. Mcconnell
  • Publication number: 20090118999
    Abstract: A method for operating an engine includes defining a two-dimensional search region based upon an input power transmittable between the internal combustion engine and an electromechanical transmission. The method further includes iteratively dividing the two-dimensional search region into a plurality of subregions based upon one of the input power and the input speed, iteratively determining an engine operating point within each of the subregions, iteratively calculating an operating cost to operate the internal combustion engine and the electromechanical transmission to meet the operator torque request for each engine operating point within each of the subregions, and iteratively identifying the subregion having a minimum operating cost to meet the operator torque request. A preferred engine operating point is determined based upon the engine operating point within the identified subregion having the minimum operating cost to meet the operator torque request.
    Type: Application
    Filed: September 29, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Bin Wu, Wilfried Brunssen, Jason J. McConnell, Kee Yong Kim, Brian R. Medema
  • Publication number: 20090118082
    Abstract: A method for controlling a powertrain includes operating a transmission in a neutral operating range state, monitoring commands affecting an input speed, monitoring a tracked clutch slip speed, determining constraints on an input acceleration based upon the commands, determining a clutch slip acceleration profile based upon the constraints on the input acceleration, determining an input acceleration profile based upon the clutch slip acceleration profile, and controlling the powertrain based upon the clutch slip acceleration profile and the input acceleration profile.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah, Kristin L. Day