Patents Assigned to Dalian Institute of Chemical Physics, Chinese Academy of Sciences
  • Publication number: 20240332570
    Abstract: An alkaline negative electrolyte and alkaline zinc-iron flow battery assembled by same are provided. The alkaline negative electrolyte includes zinc ions, a complexing agent, and alkali; the complexing agent is at least one selected from the group consisting of ethylenediaminetetraacetic acid, ethylene glycol diethyl ether diamine tetraacetic acid, cyclohexane tetraacetic acid, and ethylenediamine tetrapropionic acid; a molar ratio of the zinc ions to the complexing agent is 1:1; and a molar ratio of the complexing agent to the alkali is 1:(3-4). The zinc ions in the negative electrolyte are in form of a complex state, which is used as the negative electrolyte to assemble and obtain the alkaline zinc-iron flow battery, solves the problem of electrolyte migration in alkaline zinc-iron flow battery and improves the cycling stability of the battery; moreover, it improves the low-temperature performance of the battery, and broadens the operating temperature range of alkaline zinc-iron flow battery.
    Type: Application
    Filed: September 20, 2022
    Publication date: October 3, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xianfeng LI, Pengcheng XU, Zhizhang YUAN
  • Publication number: 20240317658
    Abstract: A method for preparing p-xylene is provided. Raw materials containing methanol, naphtha and CO2 are introduced into a reactor filled with a catalyst for a reaction to produce p-xylene. By adding the methanol, the product distribution is adjusted, and the selectivity of p-xylene is obviously improved. In addition, components containing benzene and toluene in aromatic hydrocarbon products are returned to a reaction system and co-fed with the raw materials for a reaction to produce p-xylene, so that cyclic utilization of the raw materials is achieved, and the method has extremely high economic benefits. The method has a simple process and high feasibility, can greatly improve the selectivity and yield of p-xylene, has an important application value, and provides a new way for large-scale utilization of CO2.
    Type: Application
    Filed: December 10, 2021
    Publication date: September 26, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhongmin LIU, Zhengxi YU, Yue YANG
  • Patent number: 12091501
    Abstract: The present application discloses a method for preparing polyester polyol comprising performing transesterification of raw materials containing inorganic oxyacid ester and polyhydric alcohol to obtain the polyester polyol. The polyester polyol obtained by the method described in the present application has higher heat resistance.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 17, 2024
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Danhua Yuan, Jiacheng Xing, Yunpeng Xu, Zhongmin Liu
  • Patent number: 12036538
    Abstract: Provided are a molecular sieve catalyst, a preparation method therefor, an application thereof. The molecular sieve catalyst contains a modified Na-MOR molecular sieve, and the modification comprises: organic ammonium salt exchange, dealumination treatment, and ammonium ion exchange. The catalyst obtained by the method is used in dimethyl ether for one-step production of methyl acetate. The catalyst has high activity and stable performance, and the needs of industrial production can be satisfied.
    Type: Grant
    Filed: February 2, 2019
    Date of Patent: July 16, 2024
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Hongchao Liu, Shiping Liu, Wenliang Zhu, Zhongmin Liu, Xiangang Ma, Yong Liu, Ziqiao Zhou, Youming Ni
  • Publication number: 20240228699
    Abstract: A preparation method of a polyester is provided. The method includes the following steps: allowing a raw material including a diacid and a diol to contact a monoclinic nano-TiO2 (namely, TiO2(B)) catalyst, and conducting an esterification reaction and a polycondensation reaction sequentially to obtain the polyester. The method can efficiently catalyze the synthesis of the polyester and avoid from yellowing of the polyester. Meanwhile, nano-TiO2(B) is polymerized in situ in the polyester, such that a structure of nano-TiO2(B) can adjust the structure and properties of a polyester matrix and effectively improve the mechanical, thermal, and barrier properties of the polyester.
    Type: Application
    Filed: May 19, 2022
    Publication date: July 11, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Guangyuan ZHOU, Lu LI, Min JIANG, Rui WANG
  • Patent number: 12021281
    Abstract: A multi-fuel fuel cell system is based on the distributed hydrogen production and fuel cell technologies is presented. The system includes fuel supply unit, fuel processor, fuel cell, heat exchange and oxidizer supply units. The fuel processor is a plasma-catalytic reformer. The heat exchange unit is a multiflow heat exchanger which is of a cascading structure from bottom top or a concentric cylinder structure from inside to outside. The multiflow heat exchanger has the function of balancing the heat of fuel processor and fuel cell. The fuel storage is connected to the fuel processor by the pipeline and provides fuel for the fuel processor. The outlet of fuel processor is connected via the multiflow heat exchanger to the fuel cell anode, and provides reactant for the fuel cell.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 25, 2024
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Gongquan Sun, Jicai Huang, Suli Wang
  • Patent number: 11999688
    Abstract: A method for producing dicarboxylic acid. The method includes: subjecting a raw material system including a cyclic olefin and a lower monocarboxylic acid to an addition reaction in the presence of an addition reaction catalyst to generate an intermediate product system including cyclic carboxylic acid ester; and subjecting the intermediate product system including cyclic carboxylic acid ester to a ring-opening and oxidation reaction in the presence of an oxidant and an oxidation catalyst to generate a corresponding dicarboxylic acid product. The addition reaction in the dicarboxylic acid synthesis route achieves a high single-pass conversion rate, and the selectivity of the corresponding cyclic carboxylic acid ester is high. The addition-oxidation synthesis route achieves faster reaction rates for both the addition reaction and oxidation reaction, and high yield of corresponding dicarboxylic acid product.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 4, 2024
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Shengjun Huang, Dazhi Zhang
  • Patent number: 11975315
    Abstract: Disclosed is a method for partially regenerating a catalyst for methanol and/or dimethyl ether-to-olefin. The method comprises: introducing a mixed gas into a regenerated region containing a catalyst to be regenerated, and subjecting same to a partial regeneration reaction to obtain a regenerated catalyst, wherein the mixed gas contains water vapor and air; and in the regenerated catalyst, the coke content of at least part of the regenerated catalyst is greater than 1%. The method utilizes the coupling of a mixed gas of water vapor and air to activate a deactivated catalyst, selectively eliminate part of a coke deposit in the catalyst to be regenerated, and obtain a partially regenerated catalyst for methanol-to-olefin. Another aspect of the present invention is that further provided is a method for methanol and/or dimethyl ether-to-olefin by using the partially regenerated catalyst for methanol-to-olefin regenerated by means of the method.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 7, 2024
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jinling Zhang, Mao Ye, Zhongmin Liu, Jibin Zhou, Tao Zhang, Xiangao Wang, Hailong Tang, Jing Wang
  • Publication number: 20240116844
    Abstract: A method for preparing glycolic acid through hydrolysis of alkoxyacetate is provided. The method includes: subjecting raw materials including the alkoxyacetate and water to a reaction in the presence of an acidic molecular sieve catalyst to produce the glycolic acid, where the alkoxyacetate is at least one selected from the group consisting of compounds with a structural formula shown in formula I; and in formula I, R1 and R2 each are independently any one selected from the group consisting of C1-C5 alkyl groups. The glycolic acid production method in the present application can be implemented by a traditional fixed-bed reactor under an atmospheric pressure, which is very suitable for continuous production.
    Type: Application
    Filed: February 3, 2021
    Publication date: April 11, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU
  • Publication number: 20240109833
    Abstract: A method for preparing glycolic acid and methyl glycolate through hydrolysis of methyl methoxyacetate and methoxyacetic acid is provided. The method includes allowing raw materials including methyl methoxyacetate, methoxyacetic acid, and water to contact and react with a catalyst to produce glycolic acid and methyl glycolate, where the catalyst is at least one selected from the group consisting of a solid acid catalyst, a liquid acid catalyst, a solid base catalyst, and a liquid base catalyst. The method for preparing glycolic acid and methyl glycolate in the present application can be implemented by a traditional fixed-bed reactor, tank reactor, or catalytic distillation reactor under an atmospheric pressure, which is very suitable for continuous production.
    Type: Application
    Filed: February 3, 2021
    Publication date: April 4, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU
  • Patent number: 11872549
    Abstract: A fluidized bed reactor includes a main shell and a coke control zone shell; the main shell includes an upper shell and a lower shell; the upper shell encloses a gas-solid separation zone, and the lower shell encloses a reaction zone; the reaction zone axially communicates with the gas-solid separation zone; the coke control zone shell is circumferentially arranged on an outer wall of the main shell; the coke control zone shell and the main shell enclose an annular cavity, and the annular cavity is a coke control zone; n baffles are radially arranged in the coke control zone, and the n baffles divide the coke control zone into n coke control zone subzones, where n is an integer; the coke control zone subzones are provided with a coke control raw material inlet; and a catalyst circulation hole is formed in each of n?1 of the baffles.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: January 16, 2024
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Mao Ye, Tao Zhang, Jinling Zhang, Shuliang Xu, Hailong Tang, Xiangao Wang, Cheng Zhang, Jinming Jia, Jing Wang, Hua Li, Chenggong Li, Zhongmin Liu
  • Publication number: 20230402622
    Abstract: An integrated electrode frame and preparation method and use thereof is provided. The integrated electrode frame includes a positive electrode frame, a negative electrode frame, and a membrane. Each of the positive electrode frame and the negative electrode frame is a flat plate with a central through-hole. The membrane is placed between the positive electrode frame and the negative electrode frame, and the membrane is located at the through-hole and hermetically connected to a peripheral edge of the through-hole. A peripheral edge of the positive electrode frame is hermetically connected to a peripheral edge of the negative electrode frame. A material composition of a connecting part of the positive electrode frame and the negative electrode frame contains at least one material which is the same as that of the positive electrode frame or the negative electrode frame. The structures and materials of the electrode frames and the membrane are optimized.
    Type: Application
    Filed: July 10, 2020
    Publication date: December 14, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xianfeng LI, Dingqin SHI, Huamin ZHANG
  • Patent number: 11833502
    Abstract: A coke control reactor, and a device and method for preparing low-carbon olefins from an oxygen-containing compound are provided. The coke control reactor includes a coke control reactor shell, a reaction zone I, and a coke controlled catalyst settling zone; a cross-sectional area at any position of the reaction zone I is less than that of the coke controlled catalyst settling zone; n baffles are arranged in a vertical direction in the reaction zone I; the n baffles divide the reaction zone I into m reaction zone I subzones; and a catalyst circulation hole is formed in each of the baffles, such that a catalyst flows in the reaction zone I in a preset manner. A catalyst charge in the present coke control reactor can be automatically adjusted, and an average residence time of a catalyst in the coke control reactor can be controlled by changing process operating conditions.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: December 5, 2023
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao Zhang, Mao Ye, Jinling Zhang, Shuliang Xu, Hailong Tang, Xiangao Wang, Cheng Zhang, Jinming Jia, Jing Wang, Hua Li, Chenggong Li, Zhongmin Liu
  • Publication number: 20230338935
    Abstract: A metal-organic framework (MOF) MIL-125 and a preparation method and a use thereof are provided. The MOF MIL-125 is a round cake-like crystal and has an external specific surface area (SSA) of 160 m2/g to 220 m2/g. The MOF MIL-125 provided in the present application has a large number of microporous structures, a large external SSA, and a high catalytic activity in oxidation.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 26, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jiacheng XING, Liping YANG, Danhua YUAN, Yunpeng XU, Zhongmin LIU
  • Publication number: 20230338923
    Abstract: An adsorbent and a use thereof are provided. The adsorbent is a metal-organic framework (MOF) MIL-125; the MOF MIL-125 has an external specific surface area (SSA) of 160 m2/g to 220 m2/g; and the MOF MIL-125 includes a micropore with an area of 1,000 m2/g to 1,500 m2/g. The external SSA of the MOF MIL-125 is much higher than an external SSA of the traditional MIL-125, which has promising application prospects in the adsorptive separation of xylene isomers and exhibits high selectivity for p-xylene.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 26, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Liping YANG, Jiacheng XING, Danhua YUAN, Yunpeng XU, Zhongmin LIU
  • Publication number: 20230331578
    Abstract: A preparation method of a porous oxide is provided, which includes: preparing the porous oxide with a polyester polyol as a raw material. The porous oxide prepared by the preparation method in the present application has characteristics such as uniform and adjustable pore sizes and controllable distribution of mesopores, micropores, and macropores.
    Type: Application
    Filed: September 17, 2020
    Publication date: October 19, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jiacheng XING, Danhua YUAN, Yunpeng XU, Zhongmin LIU
  • Patent number: 11784322
    Abstract: A metal seawater fuel cell includes a single cell or a battery pack which is composed of more than two single cells connected in series or in parallel or in series and parallel through circuits. The single cell has a metal anode arranged oppositely in a sealed single cell housing, a cathode carrying a hydrogen evolution catalyst, and a diaphragm arranged between the metal anode and the cathode, the bottom and the top of the single cell housing are respectively provided with fluid flow channels, and both ends of the fluid flow channels are respectively provided with openings communicated with the interior and exterior of the housing. The metal anode and/or single cell housing is placed in a closed transitional housing. The transitional housing is a degradable material or can be mechanically damaged by a driving device driven and started by a control device.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 10, 2023
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Erdong Wang, Min Liu, Zhao Yan, Gongquan Sun
  • Patent number: 11712675
    Abstract: The present application discloses a molecular sieve-based catalyst modification apparatus. The apparatus comprises a feed unit 1, a modification unit 2 and a cooling unit 3 connected in sequence; the feed unit comprises a catalyst feed unit 11 and a modifier feed unit 12, a catalyst and a modifier are introduced into the modification unit 2 respectively by the catalyst feed unit and the modifier feed unit and are discharged from the modification unit after sufficient reaction in modification unit, and then enter the cooling unit 3 for cooling. The present application further discloses a use method for the molecular sieve-based catalyst modification apparatus. The use method comprises: introducing a catalyst and a modifier into the modification unit 2 respectively through the feed unit 1; wherein the catalyst is modified by the modifier in the modification unit 2, and then discharged to the cooling unit 3 to cool until the temperature is lower than 50° C.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 1, 2023
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Tao Zhang, Mao Ye, Zhongmin Liu, Jinling Zhang, Hailong Tang, Jinming Jia, Xiangao Wang, Cheng Zhang, Hua Li, Yinfeng Zhao, Chenggong Li
  • Patent number: 11685866
    Abstract: Disclosed is a method for producing low carbon olefins and/or aromatics from feedstock comprising naphtha. The method can include the following steps: a) feeding feedstock comprising naphtha into a fast fluidized bed reactor; b) contacting the feedstock with a catalyst under conditions to produce a gas product and spent catalyst; c) separating the gas product to produce a stream comprising primarily one or more low carbon olefins and/or one or more aromatics; d) transporting the spent catalyst to a regenerator; e) regenerating the spent catalyst in the regenerator to form regenerated catalyst; and f) returning the regenerated catalyst to the fast fluidized bed reactor.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 27, 2023
    Assignees: SABIC GLOBAL TECHNOLOGIES B.V., DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Yinfeng Zhao, Mao Ye, Zhongmin Liu, Hailong Tang, Jing Wang, Jinling Zhang, Tao Zhang, Talal Khaled Al-Shammari
  • Publication number: 20230125888
    Abstract: A regeneration device, a device for preparing low-carbon olefins, and a use thereof are provided. The regeneration device includes a first regenerator and a second regenerator; a first activation zone of the first regenerator is connected to the second regenerator through a pipeline, such that a catalyst in the first activation zone is able to be delivered to the second regenerator; and the second regenerator is connected to a gas-solid separation zone of the first regenerator through a pipeline, such that a catalyst in the second regenerator is able to be delivered to the gas-solid separation zone. The regeneration device can adjust the coke content, coke content distribution, and coke species in a dimethyl ether/methanol to olefins (DMTO) catalyst to control an operation window of the DMTO catalyst, which improves the selectivity for low-carbon olefins and the atomic economy of a methanol-to-olefins (MTO) technology.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 27, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao ZHANG, Mao YE, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU