Abstract: A method of forming an optical component includes depositing slurry that includes glass powder material onto a facesheet and fusing the glass powder material to a facesheet to form a first core material layer on the facesheet. The method also includes successively fusing glass powder material in a plurality of additional core material layers to build a core material structure on the facesheet. The method can include selectively depositing slurry including glass powder material over only a portion of at least one of the facesheet, the first core material layer, and/or the one of the additional core material layers. Depositing the slurry can include extruding the slurry from an extruder.
Type:
Grant
Filed:
July 6, 2021
Date of Patent:
January 28, 2025
Assignee:
Danbury Mission Technologies, LLC
Inventors:
Bari M. Southard, Matthew J. East, Daniel E. Dunn, Kramer Harrison
Abstract: An actuator system includes a frame configured to remain stationary relative to a carriage within the frame and connected to the frame by a flexure assembly configured to constrain the carriage for only linear motion along an axis of the actuator system. A rotary base is configured to receive rotational input. Cross-blade flexures operatively connect the carriage to the rotary base, the cross-blade flexures including a plurality of blade flexures and being oriented at an oblique angle to the rotary base and to the axis of the actuator system. A rotary flexure operatively connects the rotary base to the frame. The cross-blade flexures and the rotary flexure are configured to convert rotary motion of the rotary base into linear motion of the carriage and to maintain axial and lateral stiffness.
Abstract: A method for shaping an optical element includes heating a first surface of an optical element, and allowing the first surface of the optical element to cool, thereby causing residual stress in the first surface which deforms the optical element to a predetermined shape. Heating can include applying a laser to the first surface.
Abstract: A method of coating an optical substrate with a transparent, electrically conductive coating includes depositing a semiconductor coating over a surface of an optical substrate, wherein the semiconductor coating has broadband optical transmittance. A doped semiconductor is applied in a pattern over the semiconductor coating. The doped semiconductor in the pattern is activated for electrical conductivity in the doped semiconductor.
Abstract: An actuator system includes a frame configured to remain stationary relative to a carriage within the frame and connected to the frame by a flexure assembly configured to constrain the carriage for only linear motion along an axis of the actuator system. A rotary base is configured to receive rotational input. Cross-blade flexures operatively connect the carriage to the rotary base, the cross-blade flexures including a plurality of blade flexures and being oriented at an oblique angle to the rotary base and to the axis of the actuator system. A rotary flexure operatively connects the rotary base to the frame. The cross-blade flexures and the rotary flexure are configured to convert rotary motion of the rotary base into linear motion of the carriage and to maintain axial and lateral stiffness.