Abstract: A method and apparatus under software control for pattern recognition utilizes a neural network implementation to recognize two dimensional input images which are sufficiently similar to a database of previously stored two dimensional images. Images are first image processed and subjected to a Fourier transform which yields a power spectrum. An in-class to out-of-class study is performed on a typical collection of images in order to determine the most discriminatory regions of the Fourier transform. A feature vector consisting of the highest order (most discriminatory) magnitude information from the power spectrum of the Fourier transform of the image is formed. Feature vectors are input to a neural network having preferably two hidden layers, input dimensionality of the number of elements in the feature vector and output dimensionality of the number of data elements stored in the database. Unique identifier numbers are preferably stored along with the feature vector.
Type:
Grant
Filed:
August 25, 1993
Date of Patent:
November 7, 1995
Assignee:
Datron/Transoc, Inc.
Inventors:
Timothy L. Hutcheson, Wilson Or, Venkatesh Narayanan, Subramaniam Mohan, Peter G. Wohlmut, Ramanujam Srinivasan, Bobby R. Hunt, Thomas W. Ryan