Patents Assigned to Daylight Solutions, Inc.
  • Patent number: 9077137
    Abstract: A laser assembly (12) for providing an output beam (18) includes a gain medium (16) and a laser housing (20) that retains the gain medium (16). The gain medium (16) generates the output beam (18) when electrical power is directed to the gain medium (16). The laser housing (20) includes a reference redirector (20A) that is used to a reference datum to check the alignment of the output beam (18) relative to the laser housing (20). The reference redirector (20A) can be a mirror that is integrated into the laser housing.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 7, 2015
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventor: Jeremy A. Rowlette
  • Patent number: 9059562
    Abstract: An assembly (10) for providing an assembly output beam comprises a laser assembly (12), a power source (14), and a system controller (16). The power source (14) is electrically coupled to the laser assembly (12). The system controller (16) directs power from the power source (14) to the laser assembly (12). Additionally, the system controller (16) includes a capacitor assembly (22) that is electrically connected to the laser assembly (12), and a current source (20) that directs power from the power source (14) to the capacitor assembly (22) and the laser assembly (12). The power source (14) and the capacitor assembly (22) cooperate to provide power to the laser assembly (12). Further, the capacitor assembly (22) provides pulses of power and the current source (20) directs the pulses of power to the laser assembly (12). Moreover, the current source (20) charges the capacitor assembly (22) in between the pulses of power.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: June 16, 2015
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Allen Priest, David P. Caffey
  • Patent number: 9042688
    Abstract: An optical switch (16) for alternatively redirecting a source beam (14) includes a director assembly (18) that is selectively moveable between (i) a first switch position (350), (ii) a second switch position (352), and (iii) a dual switch position (354). In the first switch position (350), the source beam (14) passes to a first port (36). In the second switch position (352), the source beam (14) is directed to a second port (38). In the dual switch position (354), the director assembly (18) splits the source beam (14) into a first beam part (314A) that is directed to the first port (36), and a second beam part (314B) that is directed to the second port (38).
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 26, 2015
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Michael Pushkarsky, Bradley Charles Steele, Kyle Jay Laudner, Christopher Edward Hatch
  • Publication number: 20150070756
    Abstract: A laser source (10) for emitting an output beam (12) along an output axis (12A) includes (i) a first laser module (16) that generates a first beam (16A); (ii) a second laser module (18) that generates a second beam (18A); (iii) a beam selector assembly (32); (iv) a first director assembly (24) that directs the first beam (16A) at the beam selector assembly (32); (v) a second director assembly (26) that directs the second beam (18A) at the beam selector assembly (32); and (vii) a control system (34) that directs power to the modules (16), (18). The beam selector assembly (32) moves between a first position in which the first beam (16A) is directed along the output axis (12A), and a second position in which the second beam (18A) is directed along the output axis (12A).
    Type: Application
    Filed: July 23, 2013
    Publication date: March 12, 2015
    Applicant: Daylight Solutions, Inc.
    Inventors: J. Allen Priest, Santino Marrone, David Caffey, David Amone, Michael Pushkarsky
  • Patent number: 8913637
    Abstract: A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of a more compact, low-voltage batteries.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 16, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Rob Marsland, Timothy Day
  • Publication number: 20140346358
    Abstract: A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of a more compact, low-voltage batteries.
    Type: Application
    Filed: January 4, 2013
    Publication date: November 27, 2014
    Applicant: DAYLIGHT SOLUTIONS, INC.
    Inventor: DAYLIGHT SOLUTIONS, INC.
  • Patent number: 8879590
    Abstract: A laser source assembly for providing an assembly output beam includes a first MIR laser source, a second MIR laser source, and a beam combiner. The first MIR laser source emits a first MIR beam that is in the MIR range and the second MIR laser source emits a second MIR beam that is in the MIR range. Further, the beam combiner spatially combines the first MIR beam and the second MIR beam to provide the assembly output beam. With this design, a plurality MIR laser sources can be packaged in a portable, common module, each of the MIR laser sources generates a narrow linewidth, accurately settable MIR beam, and the MIR beams are combined to create a multiple watt assembly output beam having the desired power.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone
  • Patent number: 8879875
    Abstract: An optical fiber switch (16) for alternatively redirecting an input beam (14) comprises a redirector (18) and a redirector mover (20). The redirector (18) is positioned in the path of the input beam (14) along a directed axis (344A). The redirector (18) redirects the input beam (14) so that a redirected beam (46) alternatively launches from the redirector (18) (i) along a first redirected axis (354) that is spaced apart from the directed axis (344A) when the redirector (18) is positioned at a first position (348), and (ii) along a second redirected axis (356) that is spaced apart from the directed axis (344A) when the redirector (18) is positioned at a second position (350) that is different from the first position (348). The redirector mover (20) moves the redirector (18) about a movement axis (366) between the first position (348) and the second position (350). The redirector mover (20) includes a stator component (320A) and a rotor component (320B) that moves relative to the stator component (320A).
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: November 4, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Alexander Dromaretsky, Michael Pushkarsky, Brandon Borgardt
  • Publication number: 20140253714
    Abstract: An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
    Type: Application
    Filed: October 25, 2012
    Publication date: September 11, 2014
    Applicant: Daylight Solutions Inc
    Inventors: Miles James Weida, Timothy Day
  • Patent number: 8774244
    Abstract: A laser source assembly for providing an assembly output beam includes a first emitter, a second emitter, and a third emitter. The first emitter emits a first beam along a first beam axis that is substantially parallel to and spaced apart from an assembly axis. The second emitter emits a second beam along a second beam axis that is substantially parallel to and spaced apart from the assembly axis. The third emitter emits a third beam along a third beam axis that is substantially parallel to and spaced apart from the assembly axis. The first beam axis, the second beam axis and the third beam axis are positioned spaced apart about and substantially equidistant from the assembly axis.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, David F. Arnone, Matt Barre, David P. Caffey, Salvatore F. Crivello, Timothy Day, Kyle Thomas
  • Publication number: 20140133509
    Abstract: A laser assembly (10) for providing a beam (20) includes a gain chip (12) and an axisymmetric optical assembly (16). The gain chip (12) emits an astigmatic, output beam (14). The optical assembly (16) adjusts the output beam (14) so that an adjusted output beam (20) has an adjusted first axis divergence angle and an adjusted second axis divergence angle. In certain embodiments, a magnitude of the adjusted first axis divergence angle is approximately equal to a magnitude of an adjusted second axis divergence angle in the far field.
    Type: Application
    Filed: December 3, 2012
    Publication date: May 15, 2014
    Applicant: DAYLIGHT SOLUTIONS, INC.
    Inventor: DAYLIGHT SOLUTIONS, INC.
  • Patent number: 8718105
    Abstract: A laser source (10) for emitting an output beam (12) includes a first gain medium (16B) that generates a first beam (16A), a second gain medium (18B) that generates a second beam (18A), a common feedback assembly (28) positioned in the path of the first beam (16A) and the second beam (18), and a control system (32). The common feedback assembly (28) redirects at least a portion of the first beam (16A) back to the first gain medium (16B), and at least a portion of the second beam (18A) back to the second gain medium (18B). The control system (32) selectively and individually directs power to the first gain medium (16B) and the second gain medium (18). Additionally, the common feedback assembly (28) can include a feedback mover (46) that continuously adjusts the angle of incidence of the first beam (16A) and the second beam (18A) on the feedback assembly (28).
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 6, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles James Weida, David F. Arnone
  • Publication number: 20140097360
    Abstract: A laser source assembly for providing an assembly output beam includes a first MIR laser source, a second MIR laser source, and a beam combiner. The first MIR laser source emits a first MIR beam that is in the MIR range and the second MIR laser source emits a second MIR beam that is in the MIR range. Further, the beam combiner spatially combines the first MIR beam and the second MIR beam to provide the assembly output beam. With this design, a plurality MIR laser sources can be packaged in a portable, common module, each of the MIR laser sources generates a narrow linewidth, accurately settable MIR beam, and the MIR beams are combined to create a multiple watt assembly output beam having the desired power.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 10, 2014
    Applicant: DAYLIGHT SOLUTIONS, INC.
    Inventor: Daylight Solutions, Inc.
  • Patent number: 8565275
    Abstract: A laser source assembly (210) for generating an assembly output beam (212) includes a first laser source (218A), a second laser source (218B), and a dispersive beam combiner (222). The first laser source (218A) emits a first beam (220A) having a first center wavelength, and the second laser source (218B) emits a second beam (220B) having a second center wavelength that is different than the first center wavelength. The dispersive beam combiner (222) includes a common area 224 that combines the first beam (220A) and the second beam (220B) to provide the assembly output beam (212). The first beam (220A) impinges on the common area (224) at a first beam angle (226A), and the second beam (220B) impinges on the common area (224) at a second beam angle (226B) that is different than the first beam angle (226A). Further, the beams (220A) (220B) that exit from the dispersive beam combiner (222) are substantially coaxial, are fully overlapping, and are co-propagating.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: October 22, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, David F. Arnone
  • Publication number: 20130243018
    Abstract: A laser assembly (10) that generates a beam (20) includes a gain medium (12) having a first facet region (24) that includes a first facet (16), a second facet region (26) that includes a second facet (18), and an intermediate region (28) that separates and connects the facet regions (24) (26). Additionally, the gain medium (12) includes a substrate layer (30) and a core layer (34) that extend between the facets (16) (18). The gain medium (12) is designed so that when current is directed to the gain medium, (i) current flows through the core layer (34) in the intermediate region (28) to generate the beam (20), and (ii) current does not flow through or flows at a reduced rate through the core layer (34) in one or both facet regions (24) (26).
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: DAYLIGHT SOLUTIONS, INC.
    Inventor: David P. Caffey
  • Patent number: 8467430
    Abstract: An external cavity laser assembly (10) that generates a light beam (12) includes a gain medium (14) and a diffraction grating (24). The gain medium (14) has a growth direction (14C), a fast axis (14A), a first facet (34A), and a second facet (34B) that is spaced apart from the first facet (34A). The gain medium (14) emits from both facets (34A) (34B). Further, a beam polarization (30) of the light beam (32) emitting from the second facet (34B) is perpendicular to the growth direction (14C) and the fast axis (14A). The grating (24) includes a plurality of grating ridges (24A) that are oriented parallel to the beam polarization (30). Moreover, each of the grating ridges (24A) can have a substantially rectangular shaped cross-sectional profile.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 18, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: David P. Caffey, Michael Radunsky, Edeline Fotheringham, Michael Pushkarsky
  • Patent number: 8442081
    Abstract: A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of a more compact, low-voltage batteries.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 14, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: Rob Marsland, Jr., Timothy Day
  • Publication number: 20130089114
    Abstract: A laser source assembly (10) comprises a laser system (228), a mounting base (226), and a temperature control system (229). The mounting base (226) supports the laser system (228). The mounting base (226) includes a side wall (232) having a side top (232T) and a side bottom (232B), and a base floor (234) that extends away from the side wall (232) between the side top (232T) and the side bottom (232B). The temperature control system (229) controls the temperature of the laser system (228) and/or the mounting base (226). The temperature control system (229) includes a heat transferor (246) positioned substantially adjacent to an outer surface (2320) of the side wall (232). Heat generated by the laser system (228) is transferred away from the base floor (234) and through the side wall (232) to the heat transferor (246).
    Type: Application
    Filed: October 11, 2012
    Publication date: April 11, 2013
    Applicant: DAYLIGHT SOLUTIONS, INC.
    Inventor: DAYLIGHT SOLUTIONS, INC.
  • Publication number: 20130088887
    Abstract: An optical fiber switch (16) for alternatively redirecting an input beam (14) comprises a redirector (18) and a redirector mover (20). The redirector (18) is positioned in the path of the input beam (14) along a directed axis (344A). The redirector (18) redirects the input beam (14) so that a redirected beam (46) alternatively launches from the redirector (18) (i) along a first redirected axis (354) that is spaced apart from the directed axis (344A) when the redirector (18) is positioned at a first position (348), and (ii) along a second redirected axis (356) that is spaced apart from the directed axis (344A) when the redirector (18) is positioned at a second position (350) that is different from the first position (348). The redirector mover (20) moves the redirector (18) about a movement axis (366) between the first position (348) and the second position (350). The redirector mover (20) includes a stator component (320A) and a rotor component (320B) that moves relative to the stator component (320A).
    Type: Application
    Filed: November 29, 2012
    Publication date: April 11, 2013
    Applicant: Daylight Solutions, Inc.
    Inventor: Daylight Solutions, Inc.
  • Publication number: 20130022311
    Abstract: An optical switch (16) for alternatively redirecting a source beam (14) includes a director assembly (18) that is selectively moveable between (i) a first switch position (350), (ii) a second switch position (352), and (iii) a dual switch position (354). In the first switch position (350), the source beam (14) passes to a first port (36). In the second switch position (352), the source beam (14) is directed to a second port (38). In the dual switch position (354), the director assembly (18) splits the source beam (14) into a first beam part (314A) that is directed to the first port (36), and a second beam part (314B) that is directed to the second port (38).
    Type: Application
    Filed: January 26, 2012
    Publication date: January 24, 2013
    Applicant: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, Bradley Charles Steele, Kyle Jay Laudner, Christopher Edward Hatch