Abstract: An automatic implement attachment and detachment system having a ground utility robot with at least one sensor; a computer processor; and a computer memory whereby the system also includes a quick hitch attachment apparatus having a body securable to the ground utility robot; at least one mateable connection part; and an implement having at least one connection member where the implement attachment system is configured to automatically attach and detach the implement to and from the ground utility robot.
Abstract: A method of creating a configurable, uni-member, bended frame chassis comprising the steps of having a single sheet of material; forming holes at predetermined locations in said single sheet of material; using the single sheet of material and forming a base, a first side, a second side, a first top plate and a second top plate by; bending the material lengthwise and upwardly and forming the first side; bending the material lengthwise and upwardly and forming the second side; and having the base formed between the first side and the second side; bending the material lengthwise at a top of the first side and forming the first top plate; and bending the material lengthwise at a top of the second side and forming the second top plate.
Abstract: Aspects of the present disclosure are presented for a multi-purpose robot. In certain implementations, the robot of the present disclosure can initiate performance of one or more tasks. Aspect(s) of the power consumption of the robot can be monitored. Input(s) originating from sensor(s) of the robot can be received. Based on the aspect(s) of the power consumption of the robot and input(s) originating from the sensor(s), aspect(s) of the performance of the one or more tasks can be adjusted.
Abstract: A ground utility robot and implement attachment apparatus having a ground utility robot, at least one implement, at least one solar panel, at least one battery that is chargeable by the at least one solar panel, a power take-off system that is connected to the ground utility robot and to the at least one implement; where the battery powers said ground utility robot and the implement; a safety system that has a computer, a safety program that utilizes a processing logic on the computer, where the safety program initiates precautionary measures that are carried out by the ground utility robot and the power take-off system if an object comes within a predefined distance from the ground utility robot and implement attachment apparatus.
Abstract: This invention is a configurable ground utility robot GURU having at least the following parts: an all-terrain mobile apparatus; a payload accepting apparatus; an onboard processor; at least one sensor that communicates with said onboard processor; at least one energy beam payload device connectable to the payload accepting apparatus, capable of creating an energy beam having enough power to elevate an internal temperature of a subject when the energy beam is focused on the subject and where the energy beam payload device communicates with the onboard processor and where the ground utility robot also has a computer program that at least performs the following functions: receives and interprets data from the at least one sensor; controls the mobile apparatus; focuses the at least one energy beam on the subject; and controls the beam strength and time duration.