Patents Assigned to DeepMind Technologies Limited
  • Patent number: 12260334
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for neural programming. One of the methods includes processing a current neural network input using a core recurrent neural network to generate a neural network output; determining, from the neural network output, whether or not to end a currently invoked program and to return to a calling program from the set of programs; determining, from the neural network output, a next program to be called; determining, from the neural network output, contents of arguments to the next program to be called; receiving a representation of a current state of the environment; and generating a next neural network input from an embedding for the next program to be called and the representation of the current state of the environment.
    Type: Grant
    Filed: October 30, 2023
    Date of Patent: March 25, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Scott Ellison Reed, Joao Ferdinando Gomes de Freitas
  • Patent number: 12254693
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying actions in a video. One of the methods obtaining a feature representation of a video clip; obtaining data specifying a plurality of candidate agent bounding boxes in the key video frame; and for each candidate agent bounding box: processing the feature representation through an action transformer neural network.
    Type: Grant
    Filed: October 2, 2023
    Date of Patent: March 18, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Joao Carreira, Carl Doersch, Andrew Zisserman
  • Patent number: 12254678
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for processing a network input using a trained neural network with network parameters to generate an output for a machine learning task. The training includes: receiving a set of training examples each including a training network input and a reference output; for each training iteration, generating a corrupted network input for each training network input using a corruption neural network; updating perturbation parameters of the corruption neural network using a first objective function based on the corrupted network inputs; generating an updated corrupted network input for each training network input based on the updated perturbation parameters; and generating a network output for each updated corrupted network input using the neural network; for each training example, updating the network parameters using a second objective function based on the network output and the reference output.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: March 18, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Dan-Andrei Calian, Sven Adrian Gowal, Timothy Arthur Mann, András György
  • Patent number: 12248861
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using antisymmetric neural networks.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: March 11, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: David Benjamin Pfau, James Spencer, Alexander Graeme de Garis Matthews
  • Patent number: 12242947
    Abstract: There is described herein a computer-implemented method of processing an input data item. The method comprises processing the input data item using a parametric model to generate output data, wherein the parametric model comprises a first sub-model and a second sub-model. The processing comprises processing, by the first sub-model, the input data to generate a query data item, retrieving, from a memory storing data point-value pairs, at least one data point-value pair based upon the query data item and modifying weights of the second sub-model based upon the retrieved at least one data point-value pair. The output data is then generated based upon the modified second sub-model.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: March 4, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Pablo Sprechmann, Siddhant Jayakumar, Jack William Rae, Alexander Pritzel, Adrià Puigdomènech Badia, Oriol Vinyals, Razvan Pascanu, Charles Blundell
  • Patent number: 12211488
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing video data using an adaptive visual speech recognition model. One of the methods includes receiving a video that includes a plurality of video frames that depict a first speaker: obtaining a first embedding characterizing the first speaker; and processing a first input comprising (i) the video and (ii) the first embedding using a visual speech recognition neural network having a plurality of parameters, wherein the visual speech recognition neural network is configured to process the video and the first embedding in accordance with trained values of the parameters to generate a speech recognition output that defines a sequence of one or more words being spoken by the first speaker in the video.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: January 28, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Ioannis Alexandros Assael, Brendan Shillingford, Joao Ferdinando Gomes de Freitas
  • Patent number: 12211484
    Abstract: Techniques are disclosed that enable generation of an audio waveform representing synthesized speech based on a difference signal determined using an autoregressive model. Various implementations include using a distribution of the difference signal values to represent sounds found in human speech with a higher level of granularity than sounds not frequently found in human speech. Additional or alternative implementations include using one or more speakers of a client device to render the generated audio waveform.
    Type: Grant
    Filed: January 19, 2024
    Date of Patent: January 28, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Luis Carlos Cobo Rus, Nal Kalchbrenner, Erich Elsen, Chenjie Gu
  • Patent number: 12205032
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for selecting an action to be performed by a reinforcement learning agent interacting with an environment. In one aspect, a method comprises: receiving a current observation; for each action of a plurality of actions: randomly sampling one or more probability values; for each probability value: processing the action, the current observation, and the probability value using a quantile function network to generate an estimated quantile value for the probability value with respect to a probability distribution over possible returns that would result from the agent performing the action in response to the current observation; determining a measure of central tendency of the one or more estimated quantile values; and selecting an action to be performed by the agent in response to the current observation using the measures of central tendency for the actions.
    Type: Grant
    Filed: December 15, 2023
    Date of Patent: January 21, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Georg Ostrovski, William Clinton Dabney
  • Patent number: 12189688
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a graph model representing an environment being interacted with by an agent. In one aspect, one of the methods include: obtaining experience data; using the experience data to update a visitation count for each of one or more state-action pairs represented by the graph model; and at each of multiple environment exploration steps: computing a utility measure for each of the one or more state-action pairs represented by the graph model; determining, based on the utility measures, a sequence of one or more planned actions that have an information gain that satisfies a threshold; and controlling the agent to perform the sequence of one or more planned actions to cause the environment to transition from a state characterized by a last observation received after a last action in the experience data into a different state.
    Type: Grant
    Filed: September 27, 2023
    Date of Patent: January 7, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Sivaramakrishnan Swaminathan, Meet Kirankumar Dave, Miguel Lazaro-Gredilla, Dileep George
  • Patent number: 12190223
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network. One of the methods includes maintaining a replay memory that stores trajectories generated as a result of interaction of an agent with an environment; and training an action selection neural network having policy parameters on the trajectories in the replay memory, wherein training the action selection neural network comprises: sampling a trajectory from the replay memory; and adjusting current values of the policy parameters by training the action selection neural network on the trajectory using an off-policy actor critic reinforcement learning technique.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: January 7, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Ziyu Wang, Nicolas Manfred Otto Heess, Victor Constant Bapst
  • Patent number: 12190236
    Abstract: Methods, computer systems, and apparatus, including computer programs encoded on computer storage media, for predicting one or more properties of a material. One of the methods includes maintaining data specifying a set of known materials each having a respective known physical structure; receiving data specifying a new material; identifying a plurality of known materials in the set of known materials that are similar to the new material; determining a predicted embedding of the new material from at least respective embeddings corresponding to each of the similar known materials; and processing the predicted embedding of the new material using an experimental prediction neural network to predict one or more properties of the new material.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: January 7, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Annette Ada Nkechinyere Obika, Tian Xie, Victor Constant Bapst, Alexander Lloyd Gaunt, James Kirkpatrick
  • Patent number: 12175737
    Abstract: A system that is configured to receive a sequence of task inputs and to perform a machine learning task is described. The system includes a reinforcement learning (RL) neural network and a task neural network. The RL neural network is configured to: generate, for each task input of the sequence of task inputs, a respective decision that determines whether to encode the task input or to skip the task input, and provide the respective decision of each task input to the task neural network.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: December 24, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Viorica Patraucean, Bilal Piot, Joao Carreira, Volodymyr Mnih, Simon Osindero
  • Patent number: 12175723
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unsupervised learning of object keypoint locations in images. In particular, a keypoint extraction machine learning model having a plurality of keypoint model parameters is trained to receive an input image and to process the input image in accordance with the keypoint model parameters to generate a plurality of keypoint locations in the input image. The machine learning model is trained using either temporal transport or spatio-temporal transport.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: December 24, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Ankush Gupta, Tejas Dattatraya Kulkarni
  • Patent number: 12159221
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a memory-based prediction system configured to receive an input observation characterizing a state of an environment interacted with by an agent and to process the input observation and data read from a memory to update data stored in the memory and to generate a latent representation of the state of the environment. The method comprises: for each of a plurality of time steps: processing an observation for the time step and data read from the memory to: (i) update the data stored in the memory, and (ii) generate a latent representation of the current state of the environment as of the time step; and generating a predicted return that will be received by the agent as a result of interactions with the environment after the observation for the time step is received.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: December 3, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Gregory Duncan Wayne, Chia-Chun Hung, David Antony Amos, Mehdi Mirza Mohammadi, Arun Ahuja, Timothy Paul Lillicrap
  • Patent number: 12151171
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for rating tasks and policies using conditional probability distributions derived from equilibrium-based solutions of games. One of the methods includes: determining, for each action selection policy in a pool of action selection policies, a respective performance measure of the action selection policy on each task in a pool of tasks, processing the performance measures of the action selection policies on the tasks to generate data defining a joint probability distribution over a set of action selection policy-task pairs, and processing the joint probability distribution over the set of action selection policy-task pairs to generate a respective rating for each action selection policy in the pool of action selection policies, where the respective rating for each action selection policy characterizes a utility of the action selection policy in performing tasks from the pool of tasks.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: November 26, 2024
    Assignee: DeepMind Technologies Limited
    Inventor: Luke Christopher Marris
  • Patent number: 12154029
    Abstract: A method of training an action selection neural network for controlling an agent interacting with an environment to perform different tasks is described. The method includes obtaining a first trajectory of transitions generated while the agent was performing an episode of the first task from multiple tasks; and training the action selection neural network on the first trajectory to adjust the control policies for the multiple tasks. The training includes, for each transition in the first trajectory: generating respective policy outputs for the initial observation in the transition for each task in a subset of tasks that includes the first task and one other task; generating respective target policy outputs for each task using the reward in the transition, and determining an update to the current parameter values based on, for each task, a gradient of a loss between the policy output and the target policy output for the task.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 26, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Tom Schaul, Matteo Hessel, Hado Philip van Hasselt, Daniel J. Mankowitz
  • Patent number: 12147899
    Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network. One of the methods includes receiving an observation characterizing a current state of the environment; determining a target network output for the observation by performing a look ahead search of possible future states of the environment starting from the current state until the environment reaches a possible future state that satisfies one or more termination criteria, wherein the look ahead search is guided by the neural network in accordance with current values of the network parameters; selecting an action to be performed by the agent in response to the observation using the target network output generated by performing the look ahead search; and storing, in an exploration history data store, the target network output in association with the observation for use in updating the current values of the network parameters.
    Type: Grant
    Filed: December 4, 2023
    Date of Patent: November 19, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Karen Simonyan, David Silver, Julian Schrittwieser
  • Patent number: 12141691
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output examples using neural networks. Each output example includes multiple N-bit output values. To generate a given N-bit output value, a first recurrent input comprising the preceding N-bit output value is processed using a recurrent neural network and in accordance with a hidden state to generate a first score distribution. Then, values for the first half of the N bits are selected. A second recurrent input comprising (i) the preceding N-bit output value and (ii) the values for the first half of the N bits are processed using the recurrent neural network and in accordance with the same hidden state to generate a second score distribution. The values for the second half of the N bits of the output value are then selected using the second score distribution.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 12, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Nal Emmerich Kalchbrenner, Karen Simonyan, Erich Konrad Elsen
  • Patent number: 12141677
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for prediction of an outcome related to an environment. In one aspect, a system comprises a state representation neural network that is configured to: receive an observation characterizing a state of an environment being interacted with by an agent and process the observation to generate an internal state representation of the environment state; a prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a predicted subsequent state representation of a subsequent state of the environment and a predicted reward for the subsequent state; and a value prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a value prediction.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 12, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: David Silver, Tom Schaul, Matteo Hessel, Hado Philip van Hasselt
  • Patent number: 12131243
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating data specifying a three-dimensional mesh of an object using an auto-regressive neural network.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: October 29, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Charlie Thomas Curtis Nash, Iaroslav Ganin, Seyed Mohammadali Eslami, Peter William Battaglia