Abstract: A computer system determines a likelihood of the presence of flame in a scene. The system obtains a series of digital infrared and optical images of the scene; identifies a candidate region in a location of the scene based on analysis of the infrared images; identifies an optical image slice based on analysis of the optical images and the location of the candidate region; and determines a likelihood of the presence of flame in the scene based on analysis of the optical image slice. Analysis of the infrared images includes detecting a high-temperature image region that exceeds a threshold temperature; detecting a turbulent motion image region; and determining whether the turbulent motion region is within a specified proximity of or overlaps with the high-temperature region. The optical image slice may be provided to a trained neural network, which returns a degree-of-confidence value that indicates whether flame is present.
Abstract: A computer system determines a likelihood of the presence of flame in a scene. The system obtains a series of digital infrared and optical images of the scene; identifies a candidate region in a location of the scene based on analysis of the infrared images; identifies an optical image slice based on analysis of the optical images and the location of the candidate region; and determines a likelihood of the presence of flame in the scene based on analysis of the optical image slice. Analysis of the infrared images includes detecting a high-temperature image region that exceeds a threshold temperature; detecting a turbulent motion image region; and determining whether the turbulent motion region is within a specified proximity of or overlaps with the high-temperature region. The optical image slice may be provided to a trained neural network, which returns a degree-of-confidence value that indicates whether flame is present.