Patents Assigned to DeepMind Technologies
  • Patent number: 12175723
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unsupervised learning of object keypoint locations in images. In particular, a keypoint extraction machine learning model having a plurality of keypoint model parameters is trained to receive an input image and to process the input image in accordance with the keypoint model parameters to generate a plurality of keypoint locations in the input image. The machine learning model is trained using either temporal transport or spatio-temporal transport.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: December 24, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Ankush Gupta, Tejas Dattatraya Kulkarni
  • Patent number: 12175737
    Abstract: A system that is configured to receive a sequence of task inputs and to perform a machine learning task is described. The system includes a reinforcement learning (RL) neural network and a task neural network. The RL neural network is configured to: generate, for each task input of the sequence of task inputs, a respective decision that determines whether to encode the task input or to skip the task input, and provide the respective decision of each task input to the task neural network.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: December 24, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Viorica Patraucean, Bilal Piot, Joao Carreira, Volodymyr Mnih, Simon Osindero
  • Patent number: 12159221
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a memory-based prediction system configured to receive an input observation characterizing a state of an environment interacted with by an agent and to process the input observation and data read from a memory to update data stored in the memory and to generate a latent representation of the state of the environment. The method comprises: for each of a plurality of time steps: processing an observation for the time step and data read from the memory to: (i) update the data stored in the memory, and (ii) generate a latent representation of the current state of the environment as of the time step; and generating a predicted return that will be received by the agent as a result of interactions with the environment after the observation for the time step is received.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: December 3, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Gregory Duncan Wayne, Chia-Chun Hung, David Antony Amos, Mehdi Mirza Mohammadi, Arun Ahuja, Timothy Paul Lillicrap
  • Patent number: 12151171
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for rating tasks and policies using conditional probability distributions derived from equilibrium-based solutions of games. One of the methods includes: determining, for each action selection policy in a pool of action selection policies, a respective performance measure of the action selection policy on each task in a pool of tasks, processing the performance measures of the action selection policies on the tasks to generate data defining a joint probability distribution over a set of action selection policy-task pairs, and processing the joint probability distribution over the set of action selection policy-task pairs to generate a respective rating for each action selection policy in the pool of action selection policies, where the respective rating for each action selection policy characterizes a utility of the action selection policy in performing tasks from the pool of tasks.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: November 26, 2024
    Assignee: DeepMind Technologies Limited
    Inventor: Luke Christopher Marris
  • Patent number: 12154029
    Abstract: A method of training an action selection neural network for controlling an agent interacting with an environment to perform different tasks is described. The method includes obtaining a first trajectory of transitions generated while the agent was performing an episode of the first task from multiple tasks; and training the action selection neural network on the first trajectory to adjust the control policies for the multiple tasks. The training includes, for each transition in the first trajectory: generating respective policy outputs for the initial observation in the transition for each task in a subset of tasks that includes the first task and one other task; generating respective target policy outputs for each task using the reward in the transition, and determining an update to the current parameter values based on, for each task, a gradient of a loss between the policy output and the target policy output for the task.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 26, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Tom Schaul, Matteo Hessel, Hado Philip van Hasselt, Daniel J. Mankowitz
  • Patent number: 12147899
    Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network. One of the methods includes receiving an observation characterizing a current state of the environment; determining a target network output for the observation by performing a look ahead search of possible future states of the environment starting from the current state until the environment reaches a possible future state that satisfies one or more termination criteria, wherein the look ahead search is guided by the neural network in accordance with current values of the network parameters; selecting an action to be performed by the agent in response to the observation using the target network output generated by performing the look ahead search; and storing, in an exploration history data store, the target network output in association with the observation for use in updating the current values of the network parameters.
    Type: Grant
    Filed: December 4, 2023
    Date of Patent: November 19, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Karen Simonyan, David Silver, Julian Schrittwieser
  • Patent number: 12141691
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output examples using neural networks. Each output example includes multiple N-bit output values. To generate a given N-bit output value, a first recurrent input comprising the preceding N-bit output value is processed using a recurrent neural network and in accordance with a hidden state to generate a first score distribution. Then, values for the first half of the N bits are selected. A second recurrent input comprising (i) the preceding N-bit output value and (ii) the values for the first half of the N bits are processed using the recurrent neural network and in accordance with the same hidden state to generate a second score distribution. The values for the second half of the N bits of the output value are then selected using the second score distribution.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 12, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Nal Emmerich Kalchbrenner, Karen Simonyan, Erich Konrad Elsen
  • Patent number: 12141677
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for prediction of an outcome related to an environment. In one aspect, a system comprises a state representation neural network that is configured to: receive an observation characterizing a state of an environment being interacted with by an agent and process the observation to generate an internal state representation of the environment state; a prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a predicted subsequent state representation of a subsequent state of the environment and a predicted reward for the subsequent state; and a value prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a value prediction.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 12, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: David Silver, Tom Schaul, Matteo Hessel, Hado Philip van Hasselt
  • Patent number: 12131243
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating data specifying a three-dimensional mesh of an object using an auto-regressive neural network.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: October 29, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Charlie Thomas Curtis Nash, Iaroslav Ganin, Seyed Mohammadali Eslami, Peter William Battaglia
  • Patent number: 12131248
    Abstract: There is described a neural network system for generating a graph, the graph comprising a set of nodes and edges. The system comprises one or more neural networks configured to represent a probability distribution over sequences of node generating decisions and/or edge generating decisions, and one or more computers configured to sample the probability distribution represented by the one or more neural networks to generate a graph.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: October 29, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Yujia Li, Christopher James Dyer, Oriol Vinyals
  • Patent number: 12124938
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for learning from delayed outcomes using neural networks. One of the methods includes receiving an input observation; generating, from the input observation, an output label distribution over possible labels for the input observation at a final time, comprising: processing the input observation using a first neural network configured to process the input observation to generate a distribution over possible values for an intermediate indicator at a first time earlier than the final time; generating, from the distribution, an input value for the intermediate indicator; and processing the input value for the intermediate indicator using a second neural network configured to process the input value for the intermediate indicator to determine the output label distribution over possible values for the input observation at the final time; and providing an output derived from the output label distribution.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: October 22, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Huiyi Hu, Ray Jiang, Timothy Arthur Mann, Sven Adrian Gowal, Balaji Lakshminarayanan, András György
  • Patent number: 12100477
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining a predicted structure of a protein that is specified by an amino acid sequence. In one aspect, a method comprises: obtaining a multiple sequence alignment for the protein; determining, from the multiple sequence alignment and for each pair of amino acids in the amino acid sequence of the protein, a respective initial embedding of the pair of amino acids; processing the initial embeddings of the pairs of amino acids using a pair embedding neural network comprising a plurality of self-attention neural network layers to generate a final embedding of each pair of amino acids; and determining the predicted structure of the protein based on the final embedding of each pair of amino acids.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: September 24, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: John Jumper, Andrew W. Senior, Richard Andrew Evans, Russell James Bates, Mikhail Figurnov, Alexander Pritzel, Timothy Frederick Goldie Green
  • Patent number: 12099928
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the methods includes providing an output derived from the neural network output for the time step as a system output for the time step; maintaining a current state of the external memory; determining, from the neural network output for the time step, memory state parameters for the time step; updating the current state of the external memory using the memory state parameters for the time step; reading data from the external memory in accordance with the updated state of the external memory; and combining the data read from the external memory with a system input for the next time step to generate the neural network input for the next time step.
    Type: Grant
    Filed: February 24, 2023
    Date of Patent: September 24, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Edward Thomas Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Philip Blunsom
  • Patent number: 12094474
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for verifying the provenance of a digital object generated by a neural network, such as an image or audio object. Also methods, systems, and apparatus, including computer programs, for training a watermarking neural network and a watermark decoding neural network. The described techniques make efficient use of computing resources and are robust to attack.
    Type: Grant
    Filed: November 15, 2023
    Date of Patent: September 17, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Sven Adrian Gowal, Christopher Gamble, Florian Nils Stimberg, Sylvestre-Alvise Guglielmo Rebuffi, Sree Meghana Thotakuri, Jamie Hayes, Ian Goodfellow, Rudy Bunel, Miklós Zsigmond Horváth, David Stutz, Olivia Anne Wiles
  • Patent number: 12088823
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for encoding video comprising a sequence of video frames. In one aspect, a method comprises for one or more of the video frames: obtaining a feature embedding for the video frame; processing the feature embedding using a rate control machine learning model to generate a respective score for each of multiple quantization parameter values; selecting a quantization parameter value using the scores; determining a cumulative amount of data required to represent: (i) an encoded representation of the video frame and (ii) encoded representations of each preceding video frame; determining, based on the cumulative amount of data, that a feedback control criterion for the video frame is satisfied; updating the selected quantization parameter value; and processing the video frame using an encoding model to generate the encoded representation of the video frame.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: September 10, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Chenjie Gu, Hongzi Mao, Ching-Han Chiang, Cheng Chen, Jingning Han, Ching Yin Derek Pang, Rene Andre Claus, Marisabel Guevara Hechtman, Daniel James Visentin, Christopher Sigurd Fougner, Charles Booth Schaff, Nishant Patil, Alejandro Ramirez Bellido
  • Patent number: 12086714
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a neural network used to select actions performed by a reinforcement learning agent interacting with an environment. In one aspect, a method includes maintaining a replay memory, where the replay memory stores pieces of experience data generated as a result of the reinforcement learning agent interacting with the environment. Each piece of experience data is associated with a respective expected learning progress measure that is a measure of an expected amount of progress made in the training of the neural network if the neural network is trained on the piece of experience data. The method further includes selecting a piece of experience data from the replay memory by prioritizing for selection pieces of experience data having relatively higher expected learning progress measures and training the neural network on the selected piece of experience data.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: September 10, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Tom Schaul, John Quan, David Silver
  • Patent number: 12073304
    Abstract: Methods, systems, and apparatus for classifying a new example using a comparison set of comparison examples. One method includes maintaining a comparison set, the comparison set including comparison examples and a respective label vector for each of the comparison examples, each label vector including a respective score for each label in a predetermined set of labels; receiving a new example; determining a respective attention weight for each comparison example by applying a neural network attention mechanism to the new example and to the comparison examples; and generating a respective label score for each label in the predetermined set of labels from, for each of the comparison examples, the respective attention weight for the comparison example and the respective label vector for the comparison example, in which the respective label score for each of the labels represents a likelihood that the label is a correct label for the new example.
    Type: Grant
    Filed: June 16, 2023
    Date of Patent: August 27, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Charles Blundell, Oriol Vinyals
  • Patent number: 12067732
    Abstract: A computer-implemented neural network system for decomposing input video data. A video data input receives a sequence of video image frames. The sequence is encoded, using a 3D spatio-temporal encoder neural network, into a set of latent variables representing a compressed version of the sequence. A 3D spatio-temporal decoder neural network processes the set of latent variables to generate two or more sets of decomposed video data; these may be stored, communicated, and/or made available to a user interface. Input video including undesired features such as reflections, shadows, and occlusions may thus be decomposed into two or more video sequences, one in which the undesired features are suppressed, and another containing the undesired features.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: August 20, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Joao Carreira, Jean-Baptiste Alayrac, Andrew Zisserman
  • Patent number: 12067491
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a policy neural network having a plurality of policy parameters and used to select actions to be performed by an agent to control the agent to perform a particular task while interacting with one or more other agents in an environment. In one aspect, the method includes: maintaining data specifying a pool of candidate action selection policies; maintaining data specifying respective matchmaking policy; and training the policy neural network using a reinforcement learning technique to update the policy parameters. The policy parameters define policies to be used in controlling the agent to perform the particular task.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: August 20, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: David Silver, Oriol Vinyals, Maxwell Elliot Jaderberg
  • Patent number: 12061964
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for controlling an agent. One of the methods includes sampling a behavior modulation in accordance with a current probability distribution; for each of one or more time steps: processing an input comprising an observation characterizing a current state of the environment at the time step using an action selection neural network to generate a respective action score for each action in a set of possible actions that can be performed by the agent; modifying the action scores using the sampled behavior modulation; and selecting the action to be performed by the agent at the time step based on the modified action scores; determining a fitness measure corresponding to the sampled behavior modulation; and updating the current probability distribution over the set of possible behavior modulations using the fitness measure corresponding to the behavior modulation.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: August 13, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Tom Schaul, Diana Luiza Borsa, Fengning Ding, David Szepesvari, Georg Ostrovski, Simon Osindero, William Clinton Dabney