Abstract: Methods and systems including computer programs encoded on computer storage media, for training and deploying machine-learned communication over radio frequency (RF) channels. One of the methods includes: determining first information; generating a first RF signal by processing using an encoder machine-learning network; determining a second RF signal that represents the first RF signal altered by transmission through a communication channel; determining a first property of the first signal or the second RF signal; calculating a first measure of distance between a target value of the first property and an actual value of the first or second RF signal; generating second information as a reconstruction of the first information using a decoder machine-learning network; calculating a second measure of distance between the first information and the second information; and updating at least one of the encoder machine-learning network or the decoder machine-learning network based on the first and second measures.
Type:
Grant
Filed:
September 25, 2019
Date of Patent:
August 18, 2020
Assignee:
DeepSig Inc.
Inventors:
Timothy James O'Shea, James Shea, Ben Hilburn
Abstract: Methods and systems including computer programs encoded on computer storage media, for training and deploying machine-learned communication over RF channels.
Type:
Grant
Filed:
August 20, 2018
Date of Patent:
August 18, 2020
Assignee:
DeepSig Inc.
Inventors:
Timothy James O'Shea, James Shea, Ben Hilburn
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for correcting distortion of radio signals A transmit radio signal corresponding to an output of a transmitting radio signal processing system is obtained. A pre-distorted radio signal is then generated by processing the transmit radio signal using a nonlinear pre-distortion machine learning model. The nonlinear pre-distortion machine learning model includes model parameters and at least one nonlinear function to correct radio signal distortion or interference. A transmit output radio signal is obtained by processing the pre-distorted radio signal through the transmitting radio signal processing system. The transmit output radio signal is then transmitted to one or more radio receivers.
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication over RF channels. In some implementations, information is obtained. An encoder network is used to process the information and generate a first RF signal. The first RF signal is transmitted through a first channel. A second RF signal is determined that represents the first RF signal having been altered by transmission through the first channel. Transmission of the first RF signal is simulated over a second channel implementing a machine-learning network, the second channel representing a model of the first channel. A simulated RF signal that represents the first RF signal having been altered by simulated transmission through the second channel is determined. A measure of distance between the second RF signal and the simulated RF signal is calculated. The machine-learning network is updated using the measure of distance.
Type:
Grant
Filed:
March 4, 2019
Date of Patent:
January 7, 2020
Assignee:
DeepSig Inc.
Inventors:
Timothy J. O'Shea, Ben Hilburn, Tamoghna Roy, Nathan West
Abstract: Methods and systems including computer programs encoded on computer storage media, for training and deploying machine-learned communication over radio frequency (RF) channels. One of the methods includes: determining first information; generating a first RF signal by processing using an encoder machine-learning network; determining a second RF signal that represents the first RF signal altered by transmission through a communication channel; determining a first property of the first signal or the second RF signal; calculating a first measure of distance between a target value of the first property and an actual value of the first or second RF signal; generating second information as a reconstruction of the first information using a decoder machine-learning network; calculating a second measure of distance between the first information and the second information; and updating at least one of the encoder machine-learning network or the decoder machine-learning network based on the first and second measures.
Type:
Grant
Filed:
August 20, 2018
Date of Patent:
October 1, 2019
Assignee:
DeepSig Inc.
Inventors:
Timothy James O'Shea, James Shea, Ben Hilburn
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for placement and scheduling of radio signal processing dataflow operations. An example method provides a primitive radio signal processing computational dataflow graph that comprises nodes representing operations and directed edges representing data flow. The nodes and directed edges of the primitive radio signal processing computational dataflow graph are partitioned to produce a set of software kernels that, when executed on processing units of a target hardware platform, achieve a specific optimization objective. Runtime resource scheduling, including data placement for individual software kernels in the set of software kernels to efficiently execute operations on the processing units of the target hardware platform. The resources of the processing units in the target hardware platform are then allocated according to the defined runtime resource scheduling.