Abstract: Thin films comprising crystalline Fe2XY4, wherein X is Si or Ge and Y is S or Se, are obtained by coating an ink comprised of nanoparticle precursors of Fe2XY4 and/or a non-particulate amorphous substance comprised of Fe, X and Y on a substrate surface and annealing the coating. The coated substrate thereby obtained has utility as a solar absorber material in thin film photovoltaic devices.
Abstract: A catalyzed metal hydride alloy is disclosed, which includes lithium amide and magnesium hydride and rubidium hydride is the catalyst. A method of making the metal hydride alloy includes combining rubidium hydride with lithium amide and magnesium hydride in a vessel to form a mixture and mechanically milling the mixture. A method of manufacturing rubidium hydride is also disclosed which includes milling rubidium metal in a vessel pressurized with hydrogen gas at an initial minimum rotation rate and increasing the rotation rate to a maximum rotation rate, alternating between periods of milling and rest, re-pressurizing the vessel with hydrogen during the rest periods, and incubating the contents of the vessel.
Type:
Grant
Filed:
April 29, 2014
Date of Patent:
March 28, 2017
Assignee:
DELAWARE STATE UNIVERSITY
Inventors:
Andrew Goudy, Tolulope Durojaiye, Jalaal Hayes
Abstract: Methods for tagging an object with an element-coded particle and identifying the object based on the element code are described. LIBS analysis can be used with the methods to provide a high resolution system for identifying and quantifying objects with great specificity. Objects can include biological and chemical molecules.