Patents Assigned to Denki Kagaku Kogyo Kabushiki Kaisha
  • Patent number: 9017824
    Abstract: Disclosed is an aluminum-diamond composite having both high thermal conductivity and thermal expansion coefficient close to those of semiconductor elements, which is improved in platability in the surface and surface roughness so that the composite becomes suitable for use as a heat sink of a semiconductor element of the like. Specifically disclosed is a plate-like aluminum-diamond composite containing diamond particles and a metal mainly composed of aluminum. The aluminum-diamond composite is composed of a composite part and surface layers formed on both sides of the composite part, and the surface layers are composed of a material containing a metal mainly composed of aluminum. The diamond particle content is 40-70% by volume of the entire aluminum-diamond composite.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 28, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hideki Hirotsuru, Hideo Tsukamoto
  • Patent number: 9000664
    Abstract: Provided is a phosphor particle group of divalent europium-activated oxynitride green light emitting phosphor particles each of which is a ?-type SiAlON represented by a general formula: EuaSibAlcOdNe, where 0.005?a?0.4, b+c=12, d+e=16, wherein a mean value of a value obtained by dividing a longer particle diameter by a shorter particle diameter is not greater than 1.75. Also provided are a light emitting apparatus using the phosphor particle group in a light converter, and a liquid crystal display television using the light emitting apparatus. With these, a high-efficiency and stable light emitting apparatus using a ?-type SiAlON, and a phosphor particle group therefor are provided.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 7, 2015
    Assignees: Sharp Kabushiki Kaisha, Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Tetsuya Hanamoto, Masatsugu Masuda, Kenji Terashima, Hideyuki Emoto, Hironori Nagasaki
  • Patent number: 8999470
    Abstract: Disclosed is a surface conductive laminated sheet which comprises a base material layer containing an ABS resin as a main component, and a surface layer laminated on the surface of at least one side of the base material layer. In the laminated sheet, the ABS resin in the base material layer includes a composition made of 5-15 mass % of vinyl cyanide monomer, 45-65 mass % of diene-based rubber, and 50-20 mass % of aromatic vinyl monomer, and includes a graft rubber having a graft rate of 50-80%. The graft rubber has a mass average molecular weight (Mw) of a graft chain of 18,000-56,000, and/or has a volume average particle diameter of 0.3 to 2.0 ?m. By using the laminated sheet, it is possible to obtain an electronic part packaging container, such as carrier tape etc., which has extremely few punch burrs regardless of the type of forming apparatus when punched by means of a slit method or embossing.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 7, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Junpei Fujiwara, Masatoshi Kawata, Yasushi Miyamura
  • Patent number: 8993661
    Abstract: Provided is a chloroprene rubber superior in the effectiveness of preventing mold staining. The chloroprene rubber contains at least one compound selected from phosphite ester compounds (such as tris(nonylphenyl)phosphite ester and tributyl phosphite ester) and phosphate ester compounds (such as tri(nonylphenyl)phosphate ester and tributyl phosphate ester) in a total amount of 0.1 to 5.0 mass % and additionally at least one compound selected from sulfonic acid compounds (such as benzenesulfonic acid and dodecylbenzenesulfonic acid) and fatty acid compounds in a total amount of 0.1 to 3.0 mass %.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: March 31, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Uichiro Yamagishi, Yasushi Abe
  • Publication number: 20150084079
    Abstract: A high-brightness phosphor having high-temperature characteristics and long-term reliability, and a white light-emitting device using this phosphor are provided. The phosphor contains a silicate phosphor (A) having a peak wavelength of at least 525 nm but not higher than 535 nm and fluorescence intensity of at least 250% but not higher than 270%; an oxynitride phosphor (B) having a peak wavelength of at least 540 nm but not higher than 545 nm and fluorescence intensity of at least 260% but not higher than 280%; and an oxynitride phosphor (C) having a peak wavelength of at least 645 nm but not higher than 655 nm, wherein the amount of the silicate phosphor (A) is at least 20% but not higher than 35% by mass, the amount of the oxynitride phosphor (B) is at least 50% but not higher than 70% by mass, and the amount of the oxynitride phosphor (C) is at least 10% but not higher than 20% by mass.
    Type: Application
    Filed: August 9, 2012
    Publication date: March 26, 2015
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Keita Kobayashi, Yasuhito Fushii, Kohki Ichikawa, Suzuya Yamada, Hideyuku Emoto
  • Publication number: 20150073086
    Abstract: Provided are a vulcanizate of a chloroprene rubber composition containing carbon black that generates a smaller amount of heat when used and a method for producing the same by a simpler and more convenient method. First, an unvulcanized rubber composition at least containing a chloroprene polymer and carbon black is vulcanization-molded, to give a semivulcanized molded article having a cure characteristic value, as determined by the method specified in JIS K6300-2: 2001, in the range of t10 to t80. Then, the semivulcanized molded article obtained by semivulcanized film-forming step is additionally vulcanized in the state as it is deformed entirely and the deformation is removed, to give vulcanizate in a desired shape.
    Type: Application
    Filed: November 27, 2012
    Publication date: March 12, 2015
    Applicants: DENKI KAGAKU KOGYO KABUSHIKI KAISHA, National University Corporation Nagaoka University of Technology
    Inventors: Yoshinobu Isono, Naoki Kobayashi, Yasushi Abe
  • Patent number: 8975347
    Abstract: Provided is a method for manufacturing electronic component improved in chip-holding efficiency, pickup efficiency and contamination resistance in a well-balanced manner, the method comprising a semi-cured adhesive layer-forming step of forming a semi-cured adhesive layer on the rear face of a wafer, a fixing step of fixing the semi-cured adhesive layer of the wafer on a ring frame with a cohesive sheet, a dicing step of dicing the wafer into semiconductor chips, a UV-irradiating step of irradiating ultraviolet ray, and a pick-up step of picking up the chips and semi-cured adhesive layers from the cohesive layer, wherein the cohesive sheet has a cohesive layer of a cohesive agent having a particular composition formed on one face of its base film.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: March 10, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Takeshi Saito, Tomomichi Takatsu
  • Publication number: 20150054010
    Abstract: A high-brightness phosphor having high-temperature characteristics and long-term reliability, and a white light-emitting device using this phosphor are provided. The phosphor contains a silicate phosphor (A) having a peak wavelength of at least 525 nm but not higher than 535 nm and fluorescence intensity of at least 250% but not higher than 270%; an oxynitride phosphor (B) having a peak wavelength of at least 540 nm but not higher than 545 nm and fluorescence intensity of at least 260% but not higher than 280%; and an nitride phosphor (C) having a peak wavelength of at least 615 nm but not higher than 625 nm, wherein the amount of the silicate phosphor (A) is at least 20% but not higher than 35% by mass, the amount of the oxynitride phosphor (B) is at least 50% but not higher than 70% by mass, and the amount of the nitride phosphor (C) is at least 10% but not higher than 20% by mass.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 26, 2015
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Keita Kobayashi, Kohki Ichikawa, Yasuhito Fushii, Hideyuku Emoto, Suzuya Yamada
  • Publication number: 20150044490
    Abstract: The present invention is intended to provide an adhesive composition for temporarily fixing which exhibits high adhesive strength and peeling property in water, and which is applicable to members having opaque area, and still which leaves no adhesive deposit on released members, so that it realize the excellent workability and environment. The present invention is a two-component composition for temporarily fixing members, comprising (A) a polyfunctional (meth)acrylate, (B) a mono-functional (meth)acrylate, (C) an organic peroxide, (D) a decomposition accelerator, (E) a polymerization initiator and (G) particulate matter, and composed of two-component system of a first agent and a second agent, said first agent containing at least said component (C) and said second agent containing at least said component (D), wherein cured body of said composition being used to bond members is brought into contact with water to be decomposed and release said members.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 12, 2015
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Hiroyuki Kurimura, Kenji Tanaka
  • Publication number: 20150042222
    Abstract: Provided are: a phosphor that has a crystal structure identical to a CaAlSiN3 crystal phase, which absorbs light of a light emitting element such as an LED and emits red light, as a host crystal and exhibits luminous efficiency more excellent than those of conventional phosphors; and a light emitting device which has high luminance and long service life by the use of this phosphor. A powder phosphor, which is represented by general formula Cax(Si,Al)2(N,O)3+y (wherein 0.75?x?0.92 and ?0.2?y?0.2), and wherein some of Ca element is substituted by Eu element. This powder phosphor has an Si/Al ratio (molar ratio) of from 0.9 to 1.55 (inclusive), an Eu content of from 0.01 at % to 0.3 at % (inclusive), and an amount of intragranular solid-solved oxygen of from 0.4% by mass to 0.7% by mass (inclusive).
    Type: Application
    Filed: November 2, 2012
    Publication date: February 12, 2015
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Hideyuki Emoto, Hiroaki Toyoshima
  • Patent number: 8951638
    Abstract: A silicon carbide powder for the production of a silicon carbide single crystal has an average particle diameter of 100 ?m or more and 700 ?m or less and a specific surface area of 0.05 m2/g or more and 0.30 m2/g or less. A method for producing a silicon carbide powder for the production of the silicon carbide single crystal including sintering a silicon carbide powder having an average particle diameter of 20 ?m or less under pressure of 70 MPa or less at a temperature of 1900° C. or more and 2400° C. or less and in a non-oxidizing atmosphere, thereby obtaining a sintered body having a density of 1.29 g/cm3 or more; adjusting particle size by means of pulverization of the sintered body; and removing impurities by means of an acid treatment.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: February 10, 2015
    Assignees: Denki Kagaku Kogyo Kabushiki Kaisha, National Institute of Advanced Industrial Science and Technology
    Inventors: Tomohisa Katou, Yusuke Takeda, Hiroshi Murata
  • Patent number: 8945461
    Abstract: Provided is a production method of a ?-sialon phosphor that europium ions are solid-solved in ?-sialon, including a mixing process for mixing raw materials of the ?-sialon phosphor; a burning process for burning the raw materials after the mixing process to form the ?-sialon phosphor; a HIP treatment process in which the ?-sialon phosphor after the burning process is subjected to a HIP treatment; an annealing process in which the ?-sialon phosphor after the HIP treatment process is subjected to an annealing treatment; and an acid treatment process in which the ?-sialon phosphor after the annealing process is subjected to an acid treatment. According to the production method of a ?-sialon phosphor, a ?-sialon phosphor excellent in luminescence intensity is obtained.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: February 3, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Tomohiro Nomiyama, Suzuya Yamada, Hisayuki Hashimoto
  • Patent number: 8927234
    Abstract: It is intended to provide a simple method for producing hyaluronic acid at a high yield. Further, it is also intended to provide a method for producing hyaluronic acid in a short period of time. The invention provides a method for producing hyaluronic acid including a step of culturing a microorganism having the capability to produce hyaluronic acid and a step of adding glutamine and arginine to a culture medium during late logarithmic growth phase of the microorganism.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 6, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Masamichi Hashimoto, Teruaki Kakema, Kenji Fujii, Masahisa Ikemi
  • Patent number: 8926864
    Abstract: A method of producing ?-SiAlON includes a sintering process, in which ?-SiAlON starting materials, a mixture of silicon nitride, aluminum nitride, optically active element compound, and at least one compound selected from aluminum oxide and silicon oxide, are sintered at temperatures ranging from 1820° C. to 2200° C. The method provides new ?-SiAlON low in carbon content and having high luminescence intensity by placing a plurality of boron nitride vessels in a graphite box to allow the ?-SiAlON starting materials packed in the plurality of boron nitride vessels to easily come in contact with nitrogen gas, and performing sintering in nitrogen atmosphere.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 6, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Masayoshi Ichikawa, Hideyuki Emoto
  • Patent number: 8921458
    Abstract: To provide a resin composition having excellent thermal conductivity and excellent insulation reliability, a molded object, a substrate material, and a circuit board. [Solution] Provided is a resin composition which comprises an epoxy resin, a hardener, and an inorganic filler, wherein the epoxy resin and/or the hardener has a naphthalene structure, the inorganic filler comprises hexagonal boron nitride, and the inorganic filler accounts for 50-85 vol. % of the whole resin composition. Since a naphthalene structure, which imparts the satisfactory ability to wet the hexagonal boron nitride included in the inorganic filler, has been introduced into the epoxy resin and/or the hardener to heighten the inorganic-filler loading characteristics, this resin composition attains excellent heat dissipation properties, heat resistance, insulating properties, etc.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 30, 2014
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kenji Miyata, Toshitaka Yamagata
  • Publication number: 20140373915
    Abstract: Provided are a multilayer sheet superior in weather resistance, heat resistance, and moisture proofness and also favorable in interlayer adhesiveness, and a back sheet for solar cells and a solar cell module prepared by using the same. The multilayer sheet 10 is prepared by laminating a polyolefin-based resin layer 1 having a melt flow rate, as determined by the method A specified in JIS K7210, of 0.5 to 25 g/10 minutes at 230° C. under a load of 2.16 kg and a polyvinylidene fluoride-based resin layer 2 having a melt flow rate, as determined by the method A specified in JIS K7210, of 0.5 to 25 g/10 minutes at 230° C. under a load of 2.16 kg, via an adhesion resin layer 3 of a conjugated diene-based polymer, a conjugated diene-based copolymer, or the hydride thereof having a melt flow rate, as determined by the method A specified in JIS K7210, of 0.1 to 50 g/10 minutes at 230° C. under a load of 2.16 kg.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 25, 2014
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Tomoo Saito, Toru Arai
  • Patent number: 8901192
    Abstract: Provided is an adhesive (meth)acrylic resin composition being high in adhesiveness and capable of affording an adhered body which can be used at high temperatures of 250° C. or higher, and possessing low outgassing property and heat resistance. A (meth)acrylic resin composition including (A) a polyfunctional (meth)acrylate, and (B) a photopolymerization initiator that exhibits a mass loss on heating of 15% by mass or less when increasing temperature from 30° C. to 250° C. at a temperature increase rate of 10° C./min. under nitrogen flow, wherein the glass transition temperature of a cured body obtained from the composition is 250° C. or higher.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: December 2, 2014
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hiroyuki Kurimura, Isamu Ichikawa, Takayuki Nagumo, Takako Hoshino, Jun Watanabe
  • Patent number: 8895140
    Abstract: Provided is a vinylidene fluoride resin film that has good adhesiveness to a base material, achieves good dispersivity even when a pigment is contained in large amounts, and has excellent thermal stability during a forming process. To a resin component composed of a vinylidene fluoride resin and a methacrylic acid ester resin, a predetermined amount of a titanium oxide surface treated with alumina and silica and a predetermined amount of a fatty acid ester of polyethylene glycol and/or its derivative are added to prepare a vinylidene fluoride resin film. Alternatively, at least a front side layer and a back side layer have such a composition, the front side layer has a combination amount of the vinylidene fluoride resin and the methacrylic acid ester resin of 70:30 to 95:5 in terms of mass ratio, and the back side layer has a combination amount of the vinylidene fluoride resin and the methacrylic acid ester resin of 5:95 to 45:55 in terms of mass ratio.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: November 25, 2014
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hidetoshi Yoshimura, Fukumu Komoda, Atsushi Igarashi, Susumu Ooka, Koji Nakajima
  • Publication number: 20140339596
    Abstract: Disclosed is a clad material for an LED light-emitting element holding substrate in which a plurality of layers composed of different materials are stacked and bonded via a metal layer to a III-V group semiconductor crystal surface, the linear expansion coefficient being 14×10?6/K or less and the thermal conductivity at a temperature of 25° C. being 200 W/mK or greater. The clad material is composed of three alternately stacked layers: two copper layers and a molybdenum layer, the molybdenum layer being 10 to 60 vol % and the difference in thickness between the copper layers being 5% or less; or a clad material composed of three copper layers alternately stacked with molybdenum layers to make five layers, the molybdenum layers being 20 to 70 vol % and the difference in thickness between the top and bottom two copper layers and the molybdenum layers being 5% or less.
    Type: Application
    Filed: September 5, 2012
    Publication date: November 20, 2014
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Yosuke Ishihara, Hideki Hirotsuru, Hideo Tsukamoto
  • Patent number: 8890189
    Abstract: Provided is a wafer for LED mounting having a small difference in thermal expansion coefficient from an LED and having excellent heat conductivity, a method for manufacturing the wafer for LED mounting, and an LED-mounted structure manufactured by using the wafer for LED mounting. The wafer for LED mounting (6) is constituted of a metal infiltrated ceramic composite (61) and a protective layer (62) that is formed therearound. The metal infiltrated ceramic composite (61) preferably has a thin metal layer (63) on a surface thereof. The method for manufacturing the wafer is characterized by comprising filling at least one selected from the group consisted of porous ceramic bodies, ceramic powder compacts and ceramic powders into a tubular body made of metal or ceramic, then impregnating a metal into the void of at least one selected from the group consisted of porous ceramic bodies, ceramic powder compacts and ceramic powders, and thereafter performing a process.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: November 18, 2014
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hideki Hirotsuru, Yosuke Ishihara, Hideo Tsukamoto