Patents Assigned to Department of Energy
  • Patent number: 10765997
    Abstract: The disclosure provides a composition for the separation of CO2 from a gaseous mixture and a method of use thereof. The composition comprises solid Basic Immobilized Amine Sorbents (BIAS) suspended in silicone oil. The method of use comprises contacting the gaseous mixture with a sorbent slurry comprising Basic Immobilized Amine Sorbents (BIAS) and silicone oil to at least partially absorb the CO2 from the gaseous mixture, and regenerating the BIAS slurry by causing desorption of the CO2.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: September 8, 2020
    Assignee: U.S. Department of Energy
    Inventors: Fan Shi, McMahan L. Gray, Jeffrey Culp, Brian W. Kail, Christopher Mark Marin
  • Patent number: 10765775
    Abstract: The invention provides medical devices comprising high-strength alloys which degrade over time in the body of a human or animal, at controlled degradation rates, without generating emboli and which have enhanced degradation due to the presence of a halogen component. In one embodiment the alloy is formed into a bone fixation device such as an anchor, screw, plate, support or rod. In another embodiment the alloy is formed into a tissue fastening device such as staple. In yet another embodiment, the alloy is formed into a dental implant or a stent.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: September 8, 2020
    Assignees: Bio DG, Inc., U.S. Department of Energy
    Inventors: Herbert Radisch, Paul Jablonski
  • Publication number: 20200276558
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 3, 2020
    Applicant: United States Department of Energy
    Inventors: DAVID A. BERRY, DUSHYANT SHEKHAWAT, DANIEL J. HAYNES, MARK W. SMITH
  • Publication number: 20200224881
    Abstract: One or more embodiments relates to a portable, personal device for providing cooking and power and adapted for use with a burner, the device including a plurality of metal-supported solid oxide fuel cells (MS-SOFCs) coupled together; a microelectronic control circuit connected to at least the MS-SOFCs; a light source coupled to at least the microelectronic control circuit; and at least one USB port coupled to at least the microelectronic control circuit; whereby the device is able to simultaneously provide light and power a personal device.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 16, 2020
    Applicant: United States Department of Energy
    Inventor: Michael C. Tucker
  • Patent number: 10702862
    Abstract: A nanocomposite coating that in turn extract self-replenishing (or -healing), superlubricious carbon film directly from natural gas or hydrocarbon gas in mechanical systems. The coating deposits on sealing and sliding surfaces reducing friction and wear. The result is a reduction in inefficiency, machine breakdown, and adverse environmental impact.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 7, 2020
    Assignee: U.S. Department of Energy
    Inventors: Ali Erdemir, Osman Eryilmaz, Jair Giovanni Ramirez Gonzalez
  • Patent number: 10688472
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 23, 2020
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Dushyant Shekhawat, Daniel J. Haynes, Mark W. Smith
  • Patent number: 10677744
    Abstract: Embodiments provide a multi-cone X-ray imaging Bragg crystal spectrometer for spectroscopy of small x-ray sources with a well-defined spectral resolution. The spectrometer includes a glass substrate machined to a multi-cone form; and a thin crystal slab attached to the glass substrate, whereby the multi-cone X-ray imaging Bragg crystal spectrometer provides rotational symmetry of a ray pattern, providing for accurate imaging, for each wavelength in the spectral range of interest. One or more embodiments include a streak camera and/or a gated strip detector.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 9, 2020
    Assignee: U.S. Department of Energy
    Inventors: Manfred Bitter, Kenneth W. Hill, Philip Efthimion, Luis Delgado-Apariccio, Novimir Pablant, Lan Gao, Brian Kraus
  • Patent number: 10603654
    Abstract: The disclosure describes a pelletized sorbent comprising a first component comprising Basic Immobilized Amine Sorbent, a second component comprising inorganic strength additive, and a third component comprising polymer binder, where the Basic Immobilized Amine Sorbent and solid inorganic strength additive are interconnected by the polymer binder. The pelletized sorbent is useful for removing CO2 from a gaseous mixture such as a post combustion gas stream.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 31, 2020
    Assignee: U.S. Department of Energy
    Inventors: Walter C. Wilfong, McMahan L. Gray, Yee Soong, Brian W. Kail
  • Patent number: 10600527
    Abstract: According to one aspect of the invention, a method to create a ceramic waste form from used nuclear fuel. An active metal salt waste, a rare earth metal waste, and raw materials are received. The active metal salt waste is combined with the rare earth metal waste, forming a waste salt. The waste salt is then heated to approximately 500° C. The raw materials are also heated to approximately 500° C. The waste salt and raw materials are then blended to form a homogenous waste mixture. The homogenous waste mixture is heated to a first predetermined temperature for a predetermined amount of time, creating a ceramic waste form. The ceramic waste form is cooled to a second predetermined temperature.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: March 24, 2020
    Assignee: U.S Department of Energy
    Inventors: Mark A. Williamson, James L. Willit, Stanley G. Wiedmeyer, Terry R. Johnson, Javier Figueroa
  • Patent number: 10589228
    Abstract: The present disclosure provides a method for the separation of a gas constituent from a gaseous mixture. The disclosure also provides polyethylene glycol disubstituted siloxane based solvents for use in the method. These solvents are of use for pre-combustion CO2 capture and are capable of replacing glycol-based solvents while offering operation at a higher temperature region. These solvents are also of use for generation of hydrogen from reformed natural gas or syngas, adjusting CO/H2 ratio for Coal & Biomass to Liquids, removal of CO2 from syngas for coal & biomass to NH3/Fertilizer, natural gas sweetening, and upgrading of landfill and biogas.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: March 17, 2020
    Assignee: U.S. Department of Energy
    Inventors: David P. Hopkinson, Nicholas Siefert, Robert L. Thompson, Megan Macala, Lei Hong
  • Publication number: 20200017409
    Abstract: An optical sensor device includes an optical waveguide portion having a core, the core having a first refractive index, and a functional material layer coupled to the optical fiber portion, the functional material layer being made of a metal oxide material, the functional material layer being structured to have a second refractive index, the second refractive index being less than the first refractive index. The functional material layer may be a nanostructure material comprising the metal oxide material with a plurality of holes or voids formed therein such that the functional material layer is caused to have the second refractive index.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, U.S. DEPARTMENT OF ENERGY
    Inventors: PENG CHEN, JACOB LORENZI POOLE, PAUL R. OHODNICKI, MICHAEL PAUL BURIC
  • Patent number: 10513436
    Abstract: Methods, systems and apparatus relate to producing synthesis gas or carbon and hydrogen utilizing a reduced catalyst CuO—Fe2O3. The method comprises introducing CH4; reducing the CuO—Fe2O3 with the introduced CH4, yielding at least a reduced metal catalyst; oxidizing the reduced metal with O2 yielding CuO—Fe2O3; and generating heat that would be used for the hydrogen and carbon or syngas production with the reduced catalyst CuO—Fe2O3.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: December 24, 2019
    Assignee: U.S. Department of Energy
    Inventors: Ranjani Siriwardane, Hanjing Tian
  • Patent number: 10486141
    Abstract: An aspect of the present disclosure is a catalyst that includes a solid support, a first metal that includes at least one of ruthenium (Ru), platinum (Pt), palladium (Pd) deposited on the solid support, and a second metal comprising at least one of tin (Sn), rhenium (Re), cobalt (Co), molybdenum (Mo), or tungsten (W) deposited on the solid support, where the first metal and the second metal are present at a first metal to second metal mass ratio between about 1.0:2.0 and about 1.0:0.5.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 26, 2019
    Assignee: U.S. Department of Energy
    Inventors: Derek R. Vardon, Todd R. Eaton, Amy Settle
  • Patent number: 10486405
    Abstract: A method of fabricating a curved surface bonding technique using low melting temperature nanoparticles or nanofilms/nanoparticles of reactive metals as eutectic compounds. The ability of nanomaterials to melt at low temperature lowers the bonding temperature and reduces/eliminates the residual stresses generated in bulk material during the bonding process of two materials with different coefficients of thermal expansion. The nanoscale materials will then be integrated and the new bond will assume properties of the bulk material, including its higher melting temperature.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: November 26, 2019
    Assignee: U.S. Department of Energy
    Inventors: Kamleshkumar Suthar, Marion M. White
  • Publication number: 20190329519
    Abstract: Disclosed is a hermetic bond for a joint including a first layer of silicon carbide; a second layer of silicon carbide; and a bonding layer positioned between the first layer and the second layer, wherein the bonding layer includes an iridium layer, a first reaction zone positioned between the iridium foil layer and the first layer, and a second reaction zone positioned between the iridium foil layer and the second layer, wherein the first reaction zone and the second reaction zone include iridium silicides.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 31, 2019
    Applicant: United States Department of Energy
    Inventor: Brian V. Cockeram
  • Patent number: 10427169
    Abstract: An electrochemical filter system is provided that can produce an ultra-clean electrolyte solution. The filter uses a working electrode with binding sites that adsorb impurities present in the electrolyte solution using a pseudocapacitive process.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 1, 2019
    Assignee: U.S. Department of Energy
    Inventors: Dusan Strmcnik, Vojislav Stamenkovic, Nenad Markovic
  • Patent number: 10427138
    Abstract: The invention provides a use of metal ferrite oxygen carrier for converting carbon dioxide to carbon monoxide or synthesis gas via three processes: catalytic dry reforming of methane, chemical looping dry reforming of fuel and promoting coal gasification with CO2. The metal ferrite oxygen carrier comprises MzFexOy, where MzFexOy is a chemical composition with 0<x?4, z>0 and 0<y?6 and M is one of Ca, Ba, and/or combinations thereof. For example, MzFexOy may be one of CaFe2O4, BaFe2O4, MgFe2O4, SrFe2O4 and/or combinations thereof. In catalytic dry reforming, methane and carbon dioxide react in the presence of metal ferrites generating a product stream comprising at least 50 vol. % CO and H2. In another embodiment, chemical looping dry reforming process where metal ferrite is reduced with a fuel and then oxidized with carbon dioxide is used for production of CO from carbon dioxide. In another embodiment, the metal ferrite is used as a promoter to produce CO continuously from coal gasification with CO2.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: October 1, 2019
    Assignee: U.S. Department of Energy
    Inventor: Ranjani V. Siriwardane
  • Patent number: 10406774
    Abstract: An exemplary method of bonding of silicon carbide and objects having a hermetic silicon carbide-iridium-silicon carbide bond. The method includes the steps of inserting an iridium foil between two SiC layers; heating the iridium foil and SiC layers at a temperature of 1500 C in a vacuum of <10?5 ton; applying a pressure between 1 ksi and 7 ksi to the iridium foil and SiC layers; maintaining the temperature and pressure for 6-10 hours; and forming a hermetic seal having a leak rate <3×10?9 cm3/sec between the iridium foil and the two SiC layers. The SiC-iridium bonds lack cracks and are hermetic.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: September 10, 2019
    Assignee: U.S. Department of Energy
    Inventor: Brian V. Cockeram
  • Patent number: 10404193
    Abstract: Embodiments relate to materials, methods to prepare, and methods of use of a thermal electrokinetic microjet apparatus. The electrokinetic microjet apparatus includes a reservoir; a jet assembly fluidly communicating with at least the reservoir; and a target electrode spaced from at least the jet assembly.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: September 3, 2019
    Assignee: U.S. Department of Energy
    Inventors: Richard J Saykally, Stephen J Harris
  • Patent number: 10358726
    Abstract: Methods for manipulating charge states of Au nanoparticles and uses for the corresponding nanoparticles are described. A preferred embodiment comprises the following steps: 1) combining at least one Au nanocluster with at least one electron accepting molecule in the presence of an excess amount of counter ion; and 2) exposing the nanocluster, electron acceptor and counter ion mixture to light creating Au+ nanoclusters. In one or more embodiments, an additional step of depositing the Au+ nanoclusters onto a catalyst support is performed.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 23, 2019
    Assignee: U.S. Department of Energy
    Inventors: Douglas Kauffman, Christopher Matranga, Dominic Alfonso, Paul Ohodnicki, Xingyi Deng, Rajan C. Siva, Chenjie Zeng, Rongchao Jin