Abstract: In various embodiments, exfoliated carbon nanotubes are described in the present disclosure. The carbon nanotubes maintain their exfoliated state, even when not dispersed in a medium such as a polymer or a liquid solution. Methods for making the exfoliated carbon nanotubes include suspending carbon nanotubes in a solution containing a nanocrystalline material, precipitating exfoliated carbon nanotubes from the solution and isolating the exfoliated carbon nanotubes. In some embodiments, methods for making exfoliated carbon nanotubes include preparing a solution of carbon nanotubes in an acid and filtering the solution through a filter to collect exfoliated carbon nanotubes on the filter. In other various embodiments, energy storage devices and polymer composites containing exfoliated carbon nanotubes are described herein.
Abstract: Compositions and methods of producing discrete nanotubes and nanoplates and a method for their production. The discrete nanotube/nanoplate compositions are useful in fabricated articles to provide superior mechanical and electrical performance. They are also useful as catalysts and catalyst supports for chemical reactions.
Abstract: Compositions of discrete carbon nanotubes for improved performance lead acid batteries. Further disclosed is a method to form a lead-acid battery with discrete carbon nanotubes.
Abstract: Compositions, and methods of obtaining them, useful for lithium ion batteries comprising discrete oxidized carbon nanotubes having attached to their surface lithium ion active materials in the form of nanometer sized crystals or layers. The composition can further comprise graphene or oxygenated graphene.
Abstract: The present disclosure relates to energy storage or collection devices and methods for making such devices having electrode materials containing exfoliated nanotubes with attached electro- or photoactive nanoscale particles or layers. The exfoliated nanotubes and attached nanoscale particles or layers may be easily fabricated by methods such as coating, solution or casting or melt extrusion to form electrodes. Electrolytes may also be used for dispersing nanotubes and also in a polymeric form to allow melt fabrication methods.