Patents Assigned to Desktop Metal, Inc.
  • Publication number: 20240139806
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from additively fabricated parts through liquid immersion of the parts. Motion of the liquid, such as liquid currents, may dislodge or otherwise move powder away from additively fabricated parts to which it is adhered or otherwise proximate to. The liquid may also provide a vehicle to carry away powder from the additively fabricated parts. Removed powder may be filtered or otherwise separated from the liquid to allow recirculation of the liquid to the parts and/or to enable re-use of the powder in subsequent additive fabrication processes. Techniques for depowdering through liquid immersion may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Application
    Filed: August 1, 2023
    Publication date: May 2, 2024
    Applicant: Desktop Metal, Inc.
    Inventors: Jamison Go, Daniel Sachs, Robert J. Nick, Jonah Samuel Myerberg, Michael Goldblatt
  • Patent number: 11969795
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: April 30, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 11951515
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from parts by directing gas onto, or near to, the powder. While fragile green parts, such as green parts produced by binder jetting, may be fragile with respect to scraping or impacts, such parts may nonetheless be resistance to damage from directed gas, even if directed at a high pressure. Techniques for depowdering through directed application of gas may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 9, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Jamison Go, Michael Santorella, Jonah Samuel Myerberg, Matthew McCambridge, Alexander LeGendre, Joseph Gabay, Robert J. Nick, Michael Goldblatt
  • Patent number: 11945943
    Abstract: Methods of additive manufacturing, binder compositions for additive manufacturing, and articles produced by and/or associated with methods of additive manufacturing are generally described.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: April 2, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Christopher Benjamin Renner, Ilya L. Rushkin, Robert J. Nick, Emanuel M. Sachs
  • Patent number: 11931767
    Abstract: A metering apparatus and corresponding method meter a powder material in a three-dimensional (3D) printing system. The metering apparatus comprises a hopper with walls configured to contain a powder material, a metering roller, and a tool. The metering roller is located beneath an opening of the hopper. The metering roller and a given wall of the walls of the hopper are spaced apart by a gap therebetween at the opening; the gap in combination with rotation of the metering roller causes the powder material to flow from under the given wall of the hopper at a substantially predictable rate. The tool is positioned at the given wall where the flow emerges and is configured to force the powder material off of the metering roller to supply the 3D printing system with the powder material for printing a 3D object.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 19, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel M. Sachs, Midnight Zero
  • Publication number: 20240083116
    Abstract: Methods provide for fabricating objects through additive manufacturing in a manner that compensates for deformations introduced during post-print processing, such as sintering. An initial model may be divided into a plurality of segments, the initial model defining geometry of an object. For each of the segments, modified geometry may be calculated, where the modified geometry compensates for a predicted deformation. Print parameters can then be updated to incorporate the modified geometry, where the print parameters define geometry of the printed object (e.g., configuration settings of the printer, a tool path, an object model). The object may then be printed based on the updated print parameters.
    Type: Application
    Filed: June 13, 2023
    Publication date: March 14, 2024
    Applicant: Desktop Metal, Inc.
    Inventors: Ricardo Chin, Michael A. Gibson, Blake Z. Reeves, Shashank Holenarasipura Raghu
  • Patent number: 11883987
    Abstract: In part, the disclosure relates to systems and methods of layer-by-layer assembly of composite structures such as for parts or workpieces. Various additive and subtractive processes can be used. In various embodiments, prepreg tapes that include continuous reinforcing fibers are used. In one aspect, a system that includes printer heads is provided. The printer heads may, in some embodiments, be used for manufacturing high quality continuous fiber reinforced structural parts. In some embodiments, the system includes a first printer head configured to lay down tape (e.g., a thermoplastic tape that includes reinforcing fibers).
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: January 30, 2024
    Assignee: DESKTOP METAL, INC.
    Inventor: Konstantinos A. Fetfatsidis
  • Patent number: 11865615
    Abstract: Techniques for depowdering additively fabricated parts are described. The techniques utilize various mechanisms to separate powder from parts. For instance, techniques for depowdering described herein may include fabrication of auxiliary structures in addition to fabrication of parts. Certain auxiliary structures may aid with depowdering operations, and may be fabricated along with parts during an additive fabrication process. The auxiliary structures may be shaped and/or have positional and/or geometrical relationships to the parts during fabrication. For instance, an auxiliary structure may include a cage structure fabricated around one or more parts.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: January 9, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Jamison Go, Emanuel M. Sachs, Michael Goldblatt, Jeffrey von Loesecke
  • Patent number: 11858210
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: January 2, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Patent number: 11858043
    Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: January 2, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Nihan Tuncer, Brian D. Kernan, Animesh Bose, Mark Sowerbutts
  • Publication number: 20230415237
    Abstract: A method of de-powdering green parts manufactured via binder jetting additive manufacturing. First, a bulk de-powdering operation is conducted on the green part. Next, a fine de-powdering operation is conducted on the green part. The fine de-powdering operation includes disposing the green part within a bed of shot brush de-powdering media and agitating the bed of shot brush de-powdering media to remove from at least one surface of the green part an amount of build material powder.
    Type: Application
    Filed: June 21, 2023
    Publication date: December 28, 2023
    Applicant: Desktop Metal, Inc.
    Inventor: Jonah Samuel Myerberg
  • Patent number: 11833585
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from parts through vibration of the powder, the parts, and/or structures mechanically connected to the powder and/or parts. For instance, the application of vibration may dislodge, aerate and/or otherwise increase the flowability of regions of the powder, thereby making it easier to remove the powder with a suitable means. Techniques for depowdering through vibration may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: December 5, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Jamison Go, Robert Michael Shydo, Jr., Emanuel M. Sachs, Michael Santorella, Midnight Zero, Jonah Samuel Myerberg, Joseph Gabay, Jeffrey von Loesecke, Alexander K. McCalmont
  • Publication number: 20230382040
    Abstract: According to some aspects, techniques are provided for fabricating sinterable metallic parts through the application of directed energy to a build material. In particular, applying energy to a build material comprising a polymer mixed with a metal powder may cause the polymer to form a cohesive structure with the metal powder. As a result, the polymer acts as a “glue” to produce a metallic green part without local melting of the metal. The green part may subsequently be sintered to remove the polymer and produce a fully dense metal part. Optionally, a step of debinding may also be performed prior to, or simultaneously with, sintering.
    Type: Application
    Filed: March 30, 2023
    Publication date: November 30, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Jonah Samuel Myerberg, Anastasios John Hart
  • Publication number: 20230381859
    Abstract: A compound sintering furnace with managed contamination for debinding and sintering parts. An inner insulation layer is disposed within an outer insulation layer and has an internal hot face surrounding a work zone. A sealed housing surrounds the inner insulation layer and is composed of a refractory material capable of withstanding a service temperature greater than a debinding temperature and less than a sintering temperature. An outer heater system is configured to heat at least a portion of the sealed housing and externally heat the inner insulation layer to, in conjunction with an inner heater system, heat the work zone to the debinding temperature, and inhibit condensation of a binder within and upon the inner insulation layer during a debinding process. The inner heater system is configured to internally heat the inner insulation and heat the work zone to the sintering temperature.
    Type: Application
    Filed: August 11, 2023
    Publication date: November 30, 2023
    Applicant: Desktop Metal, Inc.
    Inventor: Nathan Woodard
  • Patent number: 11826949
    Abstract: Systems, methods, components, and materials are disclosed for stereolithographic fabrication of three-dimensional, dense objects. A resin including at least one component of a binder system and dispersed particles can be exposed to an activation light source. The activation light source can cure the at least one component of the binder system to form a green object, which can include the at least one component of the binder system and the particles. A dense object can be formed from the green object by removing the at least one component of the binder system in an extraction process and thermally processing particles to coalesce into the dense object.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: November 28, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Michael J. Tarkanian, Yet-Ming Chiang, Jay Tobia, Olivia Molnar Lam
  • Publication number: 20230364860
    Abstract: Techniques are provided for fabricating parts via additive manufacturing by causing a component of a build material powder to contact a binder composition to thereby perform a metathesis chain-growth polymerization reaction (e.g., an olefin metathesis polymerization reaction such as ring-opening metathesis polymerization).
    Type: Application
    Filed: May 10, 2023
    Publication date: November 16, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Brian Creran, Robert J. Nick, Alexander C. Barbati, Benjamin Robert Lund
  • Publication number: 20230356470
    Abstract: Mold lock is remediated by performing a layer-by-layer, two-dimensional analysis to identify unconstrained removal paths for any support structure or material within each two-dimensional layer, and then ensuring that aligned draw paths are present for all adjacent layers, all as more specifically described herein. Where locking conditions are identified, a sequence of modification rules are then applied, such as by breaking support structures into multiple, independently removable pieces. By addressing mold lock as a series of interrelated two-dimensional geometric problems, and reserving three-dimensional remediation strategies for more challenging, complex mold lock conditions, substantial advantages can accrue in terms of computational speed and efficiency.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 9, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Ricardo Chin, Blake Z. Reeves
  • Patent number: 11766718
    Abstract: A compound sintering furnace with managed contamination for debinding and sintering parts. An inner insulation layer is disposed within an outer insulation layer and has an internal hot face surrounding a work zone. A sealed housing surrounds the inner insulation layer and is composed of a refractory material capable of withstanding a service temperature greater than a debinding temperature and less than a sintering temperature. An outer heater system is configured to heat at least a portion of the sealed housing and externally heat the inner insulation layer to, in conjunction with an inner heater system, heat the work zone to the debinding temperature, and inhibit condensation of a binder within and upon the inner insulation layer during a debinding process. The inner heater system is configured to internally heat the inner insulation and heat the work zone to the sintering temperature.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: September 26, 2023
    Assignee: Desktop Metal, Inc.
    Inventor: Nathan Woodard
  • Patent number: 11759859
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from additively fabricated parts through liquid immersion of the parts. Motion of the liquid, such as liquid currents, may dislodge or otherwise move powder away from additively fabricated parts to which it is adhered or otherwise proximate to. The liquid may also provide a vehicle to carry away powder from the additively fabricated parts. Removed powder may be filtered or otherwise separated from the liquid to allow recirculation of the liquid to the parts and/or to enable re-use of the powder in subsequent additive fabrication processes. Techniques for depowdering through liquid immersion may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: September 19, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Jamison Go, Daniel Sachs, Robert J. Nick, Jonah Samuel Myerberg, Michael Goldblatt
  • Publication number: 20230264423
    Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.
    Type: Application
    Filed: February 12, 2023
    Publication date: August 24, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander Barbati, Michael Gibson, George Hudelson, Nicholas Mykulowycz, Brian Kernan, Nihan Tuncer