Patents Assigned to Desktop Metal, Inc.
-
Patent number: 11237529Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.Type: GrantFiled: December 18, 2018Date of Patent: February 1, 2022Assignee: Desktop Metal, Inc.Inventors: Nihan Tuncer, Brian Kernan, Animesh Bose, Mark Sowerbutts
-
Publication number: 20220016700Abstract: A sintering and debinding system includes a debinding chamber configured to switch between an open state and a closed state, the open state being configured to permit receipt or removal of at least one part within or from the debinding chamber and a sintering chamber operably connected to the debinding chamber and being vertically positioned above or below the debinding chamber. The sintering system also includes a shelf structure configured to receive the at least one part, the shelf structure being movable between the debinding chamber and the sintering chamber and a gate valve configured to switch between an open state and a closed state, the gate valve being configured to selectively permit or block fluid communication between the debinding chamber and the sintering chamber.Type: ApplicationFiled: March 13, 2020Publication date: January 20, 2022Applicant: Desktop Metal, Inc.Inventors: Nathan Woodard, Richard Remo Fontana, Robert Edward Weiss
-
Publication number: 20220008991Abstract: A furnace may include an outer wall defining a chamber, the chamber including an internal cavity configured to receive one or more parts, at least one heater positioned within the chamber, the at least one heater being configured to generate temperatures of at least about 800 degrees Celsius within the internal cavity, and a vacuum pump configured to apply a vacuum to at least a portion of the chamber. The furnace may also include at least one layer of inner insulation and at least one layer of outer insulation disposed outward of the inner insulation with respect to the chamber, the at least one layer of outer insulation being sealed with respect to the at least one layer of inner insulation.Type: ApplicationFiled: February 11, 2020Publication date: January 13, 2022Applicant: Desktop Metal, Inc.Inventors: Nathan Woodard, Jonah Samuel Myerberg, Emanuel M Sachs, Richard Remo Fontana, Robert Edward Weiss, Yet-Ming Chiang, Stephen Dipietro, Nicholas Graham Bandiera
-
Publication number: 20210402473Abstract: Mold lock is remediated by performing a layer-by-layer, two-dimensional analysis to identify unconstrained removal paths for any support structure or material within each two-dimensional layer, and then ensuring that aligned draw paths are present for all adjacent layers, all as more specifically described herein. Where locking conditions are identified, a sequence of modification rules are then applied, such as by breaking support structures into multiple, independently removable pieces. By addressing mold lock as a series of interrelated two-dimensional geometric problems, and reserving three-dimensional remediation strategies for more challenging, complex mold lock conditions, substantial advantages can accrue in terms of computational speed and efficiency.Type: ApplicationFiled: September 14, 2021Publication date: December 30, 2021Applicant: Desktop Metal, Inc.Inventors: Ricardo Chin, Blake Z. Reeves
-
Publication number: 20210394265Abstract: The present invention generally relates to compositions comprising a binder and a metal powder, and associated methods. Some compositions provided include a polymer and a metal powder. Some compositions provided include a binder formulation and a metal powder. The binder formulation generally includes a first liquid and a polymer. The binder formulation may be a solution. The polymer may include a nitrogen-containing repeat unit. The metal powder may include a noble metal. Some methods provided include combining a metal powder with a binder formulation. Methods provided include but are not limited to additive manufacturing processes and injection molding processes.Type: ApplicationFiled: October 16, 2019Publication date: December 23, 2021Applicant: Desktop Metal, Inc.Inventors: Ilya L. Rushkin, Yun Bai, Shannon Lee
-
Publication number: 20210387414Abstract: An apparatus, and corresponding method, feeds build material, in the form of rods, to a drive system in a three-dimensional (3D) printing system. The apparatus dispenses a rod to a media tray and into a first groove defined by a flipper arm. The flipper arm is in a substantially horizontal position supported by a bottom ridge of the media tray. The flipper arm is rotated away from the bottom ridge and toward a stopper coupled to the flipper arm and the media tray. The stopper defines a second groove. The apparatus deposits the rod into the drive system via a feed shaft formed by the first and second grooves of the flipper arm and stopper, respectively. The apparatus enables high-speed 3D printing using the rods by overcoming challenges in loading the rods due to brittleness of the rods.Type: ApplicationFiled: August 27, 2021Publication date: December 16, 2021Applicant: Desktop Metal, Inc.Inventor: Paul Titchener
-
Publication number: 20210379664Abstract: An improved additive manufacturing system for manufacturing metal parts by magnetohydrodynamic printing liquid metal. A monitoring system including at least one camera capturing light reflected from a strobe light source. Images of the droplets are captured during their jetting and analyzed to determine whether the jetting performance is meeting specifications. A nozzle of the system has a nozzle bottom and a nozzle stem extending outward therefrom on which a meniscus of liquid metal can form. The nozzle is cleaned by bringing a ceramic rod in the vicinity of the nozzle and jetting a bead of metal which is rotated against the nozzle to remove an amount of dross.Type: ApplicationFiled: September 9, 2019Publication date: December 9, 2021Applicant: Desktop Metal, Inc.Inventors: Mark Gardner Gibson, Emanuel Michael Sachs, Julian Bell
-
Publication number: 20210370398Abstract: A camera assembly is employed in additive manufacturing to improve the fidelity of a printed object. The camera may scan the surface of a build plate of a 3D printer and an object as it is being printed to generate image data. The image data is processed to detect errors in the build plate or printed object. The printer compensates for the detected errors, which can including modifying the printer configuration and/or modifying the instructions for printing a given object. Using the updated configuration, subsequent objects may then be printed, under a corrected process, to produce an object with fidelity to an original object model.Type: ApplicationFiled: August 12, 2021Publication date: December 2, 2021Applicant: Desktop Metal, Inc.Inventors: Aaron Preston, Nicholas Mykulowycz
-
Publication number: 20210374302Abstract: Methods and systems are disclosed for generatively designing a model of an assembly of mechanical parts. One method includes receiving a first set of constraints for a first part; determining a spatial relationship between the first part and a second part; updating the first set of constraints for the first part based on at least the spatial relationship between the first part and the second part; updating a second set of constraints for the second part based on at least the updated first set up constraints and/or the spatial relationship between the first part and the second part; and generating a model for the first part based on the updated first set of constraints.Type: ApplicationFiled: May 29, 2020Publication date: December 2, 2021Applicant: Desktop Metal, Inc.Inventors: Andrew Fiske Roberts, Ricardo Chin
-
Publication number: 20210346958Abstract: A method of additive manufacturing using magnetohydrodynamic (MHD) printing of liquid metal. A first current pulse is applied to a liquid metal in a nozzle to eject a droplet from a discharge orifice. A second current pulse is applied to the liquid metal in the nozzle to reduce an amplitude of the oscillations in a meniscus on the discharge orifice. The second current pulse can be either of an opposite or the same polarity as the first current pulse and is timed according to according to the oscillation.Type: ApplicationFiled: September 20, 2019Publication date: November 11, 2021Applicant: Desktop Metal, Inc.Inventors: Mark Gardner Gibson, Emanuel Michael Sachs
-
Publication number: 20210346962Abstract: The devices, systems, and methods of the present disclosure are directed to spreader positioning techniques for consistent and rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. For example, an additive manufacturing system may include a roller and a print carriage. In a layer-by-layer fabrication process, the roller may move in advance of the print carriage over a dimension of a volume to spread a respective layer of powder onto which the print carriage delivers a binder. Controlling the position of the roller may facilitate achieving consistent layer characteristics which, in turn, may facilitate fabrication of high quality parts.Type: ApplicationFiled: April 20, 2018Publication date: November 11, 2021Applicant: Desktop Metal, Inc.Inventors: Jonah Myerberg, Ricardo Fulop, Richard Fontana, Charles Edward Martin, Brett Schuster, Emanuel Michael Sachs
-
Publication number: 20210331376Abstract: An actuation method comprising applying a force to a first rod of build material disposed within an actuation volume. The first rod of build material may include at least one metal. The method may further comprise moving the first rod of build material in a direction substantially parallel to or substantially coaxial with a longitudinal axis of the first rod of build material toward an extrusion head and loading a second rod of build material into the actuation volume. The second rod of build material may include at least one metal. A longitudinal axis of the second rod may be substantially coaxial with the longitudinal axis of the first rod. The applying step and the moving step may be repeated for the second rod of build material.Type: ApplicationFiled: April 22, 2021Publication date: October 28, 2021Applicant: Desktop Metal, Inc.Inventors: Aaron M. Preston, Charles J. Haider, Paul Titchener, Alexander C. Barbati, Nicholas Mykulowycz
-
Publication number: 20210331237Abstract: Devices, systems, and methods are directed at spreading sequential layers of powder across a powder bed and applying energy to each layer to form a three-dimensional object. The powder can include granules including agglomerations of metallic particles to facilitate spreading the metallic particles in each layer. The energy can be directed to the powder to reflow the granules in each layer to bind the metallic particles in the layer to one another and to one or more adjacent layers to form the three-dimensional object. Thus, in general, the agglomeration of the metallic particles in the granules can overcome constraints associated with metallic particles that are of a size ordinarily unsuitable for flowing and/or a size that presents safety risks. By overcoming these constraints, the granules can improve formation of dense finished parts from a powder and can result in formation of unique microstructures in finished parts.Type: ApplicationFiled: August 31, 2017Publication date: October 28, 2021Applicant: Desktop Metal, Inc.Inventors: Animesh Bose, Jonah Samuel Myerberg
-
Publication number: 20210331242Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.Type: ApplicationFiled: October 17, 2018Publication date: October 28, 2021Applicant: Desktop Metal, Inc.Inventors: Alexander Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Kernan
-
Publication number: 20210323054Abstract: A method of developing a frequency map for an MHD jetting nozzle includes filling the MHD jetting nozzle with a liquid metal. The MHD jetting nozzle is excited with a series of jetting pulses delivered at a range of frequencies the vibration response of the MHD jetting nozzle and/or a meniscus of jetting material is measured.Type: ApplicationFiled: April 16, 2021Publication date: October 21, 2021Applicant: Desktop Metal, Inc.Inventors: Mark Gardner Gibson, Emanuel Michael Sachs
-
Publication number: 20210323053Abstract: A nozzle assembly for metal additive manufacturing using magnetohydrodynamic jetting. A nozzle defines a reservoir and a discharge region having a discharge orifice. A thick film heating system disposed on an exterior of the nozzle and including a first contact pad and a second contact pad connected by a heating pathway heats build material in the nozzle to a liquid state. A first electrode and a second electrode together configured to deliver an electrical current through the liquid build material in the discharge region while a magnet system delivers a magnetic field perpendicular the electrical current, thereby jetting liquid metal to form successive build layers.Type: ApplicationFiled: April 16, 2021Publication date: October 21, 2021Applicant: Desktop Metal, Inc.Inventors: Mark Gardner Gibson, Julian Bell, Emanuel Michael Sachs, Nicholas Bandiera
-
Patent number: 11148206Abstract: Mold lock is remediated by performing a layer-by-layer, two-dimensional analysis to identify unconstrained removal paths for any support structure or material within each two-dimensional layer, and then ensuring that aligned draw paths are present for all adjacent layers, all as more specifically described herein. Where locking conditions are identified, a sequence of modification rules are then applied, such as by breaking support structures into multiple, independently removable pieces. By addressing mold lock as a series of interrelated two-dimensional geometric problems, and reserving three-dimensional remediation strategies for more challenging, complex mold lock conditions, substantial advantages can accrue in terms of computational speed and efficiency.Type: GrantFiled: April 23, 2018Date of Patent: October 19, 2021Assignee: Desktop Metal, Inc.Inventors: Ricardo Chin, Blake Z. Reeves
-
Patent number: 11135774Abstract: An apparatus, and corresponding method, feeds build material, in the form of rods, to a drive system in a three-dimensional (3D) printing system. The apparatus dispenses a rod to a media tray and into a first groove defined by a flipper arm. The flipper arm is in a substantially horizontal position supported by a bottom ridge of the media tray. The flipper arm is rotated away from the bottom ridge and toward a stopper coupled to the flipper arm and the media tray. The stopper defines a second groove. The apparatus deposits the rod into the drive system via a feed shaft formed by the first and second grooves of the flipper arm and stopper, respectively. The apparatus enables high-speed 3D printing using the rods by overcoming challenges in loading the rods due to brittleness of the rods.Type: GrantFiled: April 19, 2018Date of Patent: October 5, 2021Assignee: Desktop Metal, Inc.Inventor: Paul Titchener
-
Publication number: 20210291274Abstract: A method for fabricating an infiltrated object of a desired shape having a high volume fraction of infiltrant using an additively manufactured preform. Using an additive manufacturing technique, the preform is formed with graded macro-porosity. When infiltrated, the void volume of the macro-porosity is filled with infiltrant Optionally, the void volume may be varied across the profile of the object to create a gradient of mechanical properties in the infiltrated object.Type: ApplicationFiled: July 15, 2019Publication date: September 23, 2021Applicant: Desktop Metal, Inc.Inventors: Timothy Sercombe, Michael Andrew Gibson, Ellen Elizabeth Benn
-
Publication number: 20210283693Abstract: The devices, systems, and methods of the present disclosure are directed to powder spreading and binder distribution techniques for consistent and rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. For example, a powder may be spread to form a layer along a volume defined by a powder box, a binder may be deposited along the layer to form a layer of a three-dimensional object, and the direction of spreading the layer and depositing the binder may be in a first direction and in a second direction, different from the first direction, thus facilitating rapid formation of the three-dimensional object with each passage of the print carriage over the volume. Powder delivery, powder spreading, thermal energy delivery, and combinations thereof, may facilitate consistently achieving quality standards as the rate of fabrication of the three-dimensional object is increased.Type: ApplicationFiled: April 20, 2018Publication date: September 16, 2021Applicant: Desktop Metal, Inc.Inventors: Jonah Myerberg, Ricardo Fulop, Brett Schuster, Emanuel Michael Sachs, Paul A. Hoisington, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, George Hudelson