Patents Assigned to DexCom, Inc.
  • Patent number: 10349871
    Abstract: Systems and methods for detecting and reporting patterns in analyte concentration data are provided. According to some implementations, an implantable device for continuous measurement of an analyte concentration is disclosed. The implantable device includes a sensor configured to generate a signal indicative of a concentration of an analyte in a host, a memory configured to store data corresponding at least one of the generated signal and user information, a processor configured to receive data from at least one of the memory and the sensor, wherein the processor is configured to generate pattern data based on the received information, and an output module configured to output the generated pattern data. The pattern data can be based on detecting frequency and severity of analyte data in clinically risky ranges.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: July 16, 2019
    Assignee: DexCom, Inc.
    Inventors: Phil Mayou, Hari Hampapuram, David Price, Keri Weindel, Kostyantyn Snisarenko, Michael Robert Mensinger, Leif N. Bowman, Robert J. Boock, Apurv Ullas Kamath, Eli Reihman, Peter C. Simpson
  • Patent number: 10349873
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: July 16, 2019
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jacob S. Leach, Ying Li, Daiting Rong, Sean Saint, Peter C. Simpson, Mark C. Brister
  • Patent number: 10335075
    Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 2, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Lucas Bohnett, Arturo Garcia, Apurv Ullas Kamath, Jack Pryor
  • Patent number: 10335065
    Abstract: Systems and methods for a continuous monitoring of analyte values received from an analyte sensor system are provided. One method for a wireless data communication between an analyte sensor system and a mobile device involves storing identification information associated with a transceiver of the analyte sensor system, the identification information entered by a user of the mobile device via a custom application running on the mobile device; causing the custom application to enter a background mode; searching for advertisement signals; receiving an advertisement signal from the transceiver; authenticating the transceiver based on the identification information; prompting the user to bring the custom application to a foreground mode; causing the custom application to request a confirmation from the user that a data connection with the transceiver is desired; receiving the confirmation from the user; and completing the data connection with the transceiver.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: July 2, 2019
    Assignee: DexCom, Inc.
    Inventors: Jose Hector Hernandez-Rosas, Shawn Larvenz, Mark Dervaes, Indrawati Gauba, Michael Robert Mensinger, Eric Cohen, Brian Christopher Smith, Jorge Valdes, Jacob S. Leach
  • Patent number: 10327688
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10328204
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Scott M. Belliveau, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Naresh C. Bhavaraju, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable
  • Patent number: 10327638
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Paul V. Neale, Peter C. Simpson, James H. Brauker, James Patrick Thrower, Mark Shults, Rathbun K. Rhodes, Paul V. Goode, Jr., Arnold L. Holmquist
  • Patent number: 10327687
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 10332286
    Abstract: Systems and methods are described that provide a dynamic reporting functionality that can identify important information and dynamically present a report about the important information that highlights important findings to the user. The described systems and methods are generally described in the field of diabetes management, but are applicable to other medical reports as well. In one implementation, the dynamic reports are based on available data and devices. For example, useless sections of the report, such as those with no populated data, may be removed, minimized in importance, assigned a lower priority, or the like.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Georgios Zamanakos, Daniel Justin Wiedeback, Jeffrey Grant Stewart, Eli Reihman, David Price, Lauren C. Miller, Keri Leone, Dan Kraemer, Katherine Eng Kirby, Greg Kida, Apurv Ullas Kamath, Adam R. Greene, Rebecca Gimenez, Sarah Paige Elli, Rian Draeger, Shane Philip Delmore, Leif N. Bowman
  • Patent number: 10314525
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: June 11, 2019
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Mark C. Brister, Matthew D. Wightlin
  • Patent number: 10307059
    Abstract: The subject matter disclosed herein provides methods for presenting glucose level data. Glucose data for a patient may be received. A current glucose level and a rate of change of the current glucose level may be determined based on the received glucose data. A first interface may be displayed on a screen of a device. The first interface may include a unitary icon. The unitary icon may display the current glucose level and a visualization of the rate of change. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 4, 2019
    Assignee: DexCom, Inc.
    Inventors: Katherine Yerre Koehler, Esteban Cabrera, Jr., Eric Cohen, Mark Dervaes, Rian Draeger, Sheryl Sadsarin Gaano, Thomas Hall, Paul Kramer, Shawn Larvenz, Michael Robert Mensinger, Paul Noble-Campbell, Andrew Atilla Pal, Eli Reihman, Brian Christopher Smith, Angela Marie Traven
  • Patent number: 10299712
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure additional analyte or non-analyte related signal. Such measurements may provide a background and/or sensitivity measurement(s) for use in processing sensor data and may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: May 28, 2019
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, James R. Petisce, Peter C. Simpson
  • Patent number: 10300507
    Abstract: The present invention relates generally to devices for measuring an analyte in a host. More particularly, the present invention relates to devices for measurement of glucose in a host that incorporate a cellulosic-based resistance domain.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 28, 2019
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Kum Ming Woo, Victor Ha, Melissa A. Nicholas
  • Patent number: 10299733
    Abstract: Continuous Glucose Monitoring (CGM) devices provide glucose concentration measurements in the subcutaneous tissue with limited accuracy and precision. Therefore, CGM readings cannot be incorporated in a straightforward manner in outcome metrics of clinical trials e.g. aimed to assess new glycaemic-regulation therapies. To define those outcome metrics, frequent Blood Glucose (BG) reference measurements are still needed, with consequent relevant difficulties in outpatient settings. Here we propose a “retrofitting” algorithm that produces a quasi continuous time BG profile by simultaneously exploiting the high accuracy of available BG references (possibly very sparsely collected) and the high temporal resolution of CGM data (usually noisy and affected by significant bias).
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: May 28, 2019
    Assignee: DexCom, Inc.
    Inventors: Claudio Cobelli, Simone Del Favero, Andrea Facchinetti, Giovanni Sparacino
  • Patent number: 10285591
    Abstract: The subject matter disclosed herein provides methods for presenting glucose level data. Glucose data for a patient may be received. A current glucose level and a rate of change of the current glucose level may be determined based on the received glucose data. A first interface may be displayed on a screen of a device. The first interface may include a unitary icon. The unitary icon may display the current glucose level and a visualization of the rate of change. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: May 14, 2019
    Assignee: DexCom, Inc.
    Inventors: Katherine Yerre Koehler, Esteban Cabrera, Jr., Eric Cohen, Mark Dervaes, Rian Draeger, Sheryl Sadsarin Gaano, Thomas Hall, Paul Kramer, Shawn Larvenz, Michael Robert Mensinger, Paul Noble-Campbell, Andrew Atilla Pal, Eli Reihman, Brian Christopher Smith, Angela Marie Traven
  • Patent number: 10278623
    Abstract: Sleeves and cases for protecting medical devices against contamination, and methods for cleaning and disinfecting medical devices are provided. The various embodiments enable a single medical device to be used by more than one patient successively while reducing the risk of disease transmission from patient to patient.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 7, 2019
    Assignee: DexCom, Inc.
    Inventors: Nicholas Polytaridis, David J. Carner, Jacob S. Leach, Christina Orsini
  • Patent number: 10278650
    Abstract: This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 7, 2019
    Assignee: DexCom, Inc.
    Inventors: Eric Johnson, Michael Robert Mensinger, Peter C. Simpson, Thomas Hall, Hari Hampapuram, Kostyantyn Snisarenko, Eli Reihman, Holly Chico, Kassandra Constantine
  • Patent number: 10278580
    Abstract: An integrated system for the monitoring and treating diabetes is provided, including an integrated receiver/hand-held medicament injection pen, including electronics, for use with a continuous glucose sensor. In some embodiments, the receiver is configured to receive continuous glucose sensor data, to calculate a medicament therapy (e.g., via the integrated system electronics) and to automatically set a bolus dose of the integrated hand-held medicament injection pen, whereby the user can manually inject the bolus dose of medicament into the host. In some embodiments, the integrated receiver and hand-held medicament injection pen are integrally formed, while in other embodiments they are detachably connected and communicated via mutually engaging electrical contacts and/or via wireless communication.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: May 7, 2019
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Nelson Quintana, Antonio C. Llevares, John Michael Dobbles, Richard C. Yang, Michael Robert Mensinger
  • Patent number: 10278732
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing. Systems and methods according to present principles allow for such steps to occur without significant loss of spring force, and without deleterious effects such as seal slingshotting.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: May 7, 2019
    Assignee: DexCom, Inc.
    Inventors: Ryan Everett Schoonmaker, Phong Lieu, Kyle Neuser, Todd Andrew Newhouse, Jack Pryor, Peter C. Simpson, Maria Noel Brown Wells, Justen Deering England, Stefanie Lynn Mah, Leonard Darius Barbod, Jillian K. Allen, Jennifer Blackwell, Michael J. Estes, Philip Thomas Pupa, Timothy Joseph Goldsmith, Kyle Tinnell Keller, Christopher M. Davis, David DeRenzy, Eric Gobrecht, Jason Halac, Jonathan Hughes, Kathleen Suzanne Hurst, Randall Scott Koplin
  • Patent number: D851256
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 11, 2019
    Assignee: DexCom, Inc.
    Inventors: Todd Andrew Newhouse, Ryan Schoonmaker