Patents Assigned to DexCom, Inc.
-
Patent number: 12364415Abstract: An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.Type: GrantFiled: March 21, 2023Date of Patent: July 22, 2025Assignee: DexCom, Inc.Inventors: Neel Narayan Shah, John Michael Gray, Jason Halac, Carl Erich Hoffmeier, Neal Davis Johnston, Nicholas Kalfas
-
Patent number: 12366548Abstract: Disclosed are devices for determining an analyte concentration. The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and an electronics unit operatively connected to the sensor. The electronics unit may be engaged with a housing that may secure the device to a host's skin. In this regard, in one embodiment, the housing may be attached to an adhesive patch that is fastened to the skin of the host.Type: GrantFiled: November 21, 2023Date of Patent: July 22, 2025Assignee: DEXCOM, INC.Inventors: Ted Tang Lee, Andrew Trinin Dennis, Shanger Wang, Jiong Zou
-
Patent number: 12360074Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.Type: GrantFiled: July 30, 2021Date of Patent: July 15, 2025Assignee: DEXCOM, INC.Inventors: Ted Tang Lee, Shanger Wang, Jiong Zou
-
Patent number: 12354751Abstract: A mathematical model of type 1 diabetes (T1D) patient decision-making can be used to simulate, in silico, realistic glucose/insulin dynamics, for several days, in a variety of subjects who take therapeutic actions (e.g. insulin dosing) driven by either self-monitoring blood glucose (SMBG) or continuous glucose monitoring (CGM). The decision-making (DM) model can simulate real-life situations and everyday patient behaviors. Accurate submodels of SMBG and CGM measurement errors are incorporated in the comprehensive DM model. The DM model accounts for common errors the patients are used to doing in their diabetes management, such as miscalculations of meal carbohydrate content, early/delayed insulin administrations and missed insulin boluses. The DM model can be used to assess in silico if/when CGM can safely substitute SMBG in T1D management, to develop and test guidelines for CGM driven insulin dosing, to optimize and individualize off-line insulin therapies and to develop and test decision support systems.Type: GrantFiled: June 23, 2023Date of Patent: July 8, 2025Assignee: DEXCOM, INC.Inventors: Martina Vettoretti, Andrea Facchinetti, Giovanni Sparacino, Claudio Cobelli
-
Patent number: 12354742Abstract: Glucose prediction using machine learning (ML) and time series glucose measurements is described. Given the number of people that wear glucose monitoring devices and because some wearable glucose monitoring devices can produce measurements continuously, a platform providing such devices may have an enormous amount of data. This amount of data is practically, if not actually, impossible for humans to process and covers a robust number of state spaces unlikely to be covered without the enormous amount of data. In implementations, a glucose monitoring platform includes an ML model trained using historical time series glucose measurements of a user population. The ML model predicts upcoming glucose measurements for a particular user by receiving a time series of glucose measurements up to a time and determining the upcoming glucose measurements of the particular user for an interval subsequent to the time based on patterns learned from the historical time series glucose measurements.Type: GrantFiled: December 4, 2020Date of Patent: July 8, 2025Assignee: Dexcom, Inc.Inventors: Mark Derdzinski, Andrew Scott Parker
-
Patent number: 12329932Abstract: Methods, devices and systems are disclosed for inter-app communications between software applications on a mobile communications device. In one aspect, a computer-readable medium on a mobile computing device comprising an inter-application communication data structure to facilitate transitioning and distributing data between software applications in a shared app group for an operating system of the mobile computing device includes a scheme field of the data structure providing a scheme id associated with a target software app to transition to from a source software app, wherein the scheme id is listed on a scheme list stored with the source software app; and a payload field of the data structure providing data and/or an identification where to access data in a shared file system accessible to the software applications in the shared app group, wherein the payload field is encrypted.Type: GrantFiled: July 15, 2024Date of Patent: June 17, 2025Assignee: Dexcom, Inc.Inventors: Gary A. Morris, Scott M. Belliveau, Esteban Cabrera, Jr., Anna Leigh Davis, Rian W. Draeger, Laura J. Dunn, Timothy Joseph Goldsmith, Hari Hampapuram, Christopher Robert Hannemann, Apurv Ullas Kamath, Katherine Yerre Koehler, Patrick Wile McBride, Michael Robert Mensinger, Francis William Pascual, Philip Mansiel Pellouchoud, Nicholas Polytaridis, Philip Thomas Pupa, Kevin Shoemaker, Brian Christopher Smith, Benjamin Elrod West, Atiim Joseph Wiley
-
Patent number: 12315614Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.Type: GrantFiled: October 24, 2023Date of Patent: May 27, 2025Assignee: Dexcom, Inc.Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian W. Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea Jean Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel S. Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
-
Patent number: 12310723Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.Type: GrantFiled: April 22, 2021Date of Patent: May 27, 2025Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
-
Publication number: 20250166254Abstract: An integrated system for the monitoring and treating diabetes is provided, including an integrated receiver/hand-held medicament injection pen, including electronics, for use with a continuous glucose sensor. In some embodiments, the receiver is configured to receive continuous glucose sensor data, to calculate a medicament therapy (e.g., via the integrated system electronics) and to automatically set a bolus dose of the integrated hand-held medicament injection pen, whereby the user can manually inject the bolus dose of medicament into the host. In some embodiments, the integrated receiver and hand-held medicament injection pen are integrally formed, while in other embodiments they are detachably connected and communicated via mutually engaging electrical contacts and/or via wireless communication.Type: ApplicationFiled: January 17, 2025Publication date: May 22, 2025Applicant: DexCom, Inc.Inventors: Apurv Ullas Kamath, Richard C. Yang, Jacob S. Leach, Nelson Quintana
-
Patent number: 12289279Abstract: Certain aspects of the present disclosure relate to methods and systems for optimized delivery of communications including content to users of a software application. The method also includes obtaining, by a customer engagement platform (CEP), a set of cohort selection criteria for identifying a user cohort to deliver the content; identifying, by a data analytics platform (DAP), the user cohort to communicate with in accordance with the set of cohort selection criteria; identifying, by the DAP, one or more communication configurations for communicating with one or more sub-groups within the user cohort; and to each user of the user cohort, transmitting one or more communications based on the content and a corresponding communication configuration for a sub-group that may include the corresponding user; and measuring engagement outcomes associated with usage of the corresponding one or more communication configurations in communication with each of the sub-groups.Type: GrantFiled: October 17, 2023Date of Patent: April 29, 2025Assignee: Dexcom, Inc.Inventors: Andrea J. Jackson, Subrai Girish Pai, Mark Derdzinski, Maritza S. Powell, Joost Herman Van Der Linden, Jessica S. Larrabee
-
Patent number: 12279865Abstract: Systems for applying a transcutaneous monitor to a person can include a telescoping assembly, a sensor, and a base with adhesive to couple the sensor to skin. The sensor can be located within the telescoping assembly while the base protrudes from a distal end of the system. The system can be configured to couple the sensor to the base by compressing the telescoping assembly.Type: GrantFiled: February 3, 2022Date of Patent: April 22, 2025Assignee: DexCom, Inc.Inventors: Jason Halac, John Michael Gray, Neal Davis Johnston, Justen Deering England, Peter C. Simpson
-
Patent number: 12284519Abstract: Techniques and protocols for facilitating wired or wireless secure communications between a sensor system and one or more other devices deployed in healthcare facilities are disclosed. In certain embodiments, the techniques and protocols include secure device pairing techniques and protocols for achieving heightened security, for example, recommended in healthcare facilities. In certain embodiments, a method comprises executing, at an application layer of a sensor system, a password authenticated key exchange (PAKE) protocol with a display device to derive an authentication key; executing, at the sensor system, an authenticated pairing protocol with the display device; after the authenticating is successful, establishing an encrypted connection between the sensor system and the display device; and transmitting, from the sensor system to the display device, analyte data indicative of measured analyte levels via the encrypted connection.Type: GrantFiled: October 21, 2022Date of Patent: April 22, 2025Assignee: Dexcom, Inc.Inventors: Aniel Alvarez, Jorge R. Barreras, Reinier Sanchez Bao, Barry Nicholas Solomon, Victor Villaverde Garcia
-
Patent number: 12268497Abstract: The present embodiments provide systems and methods for, among others, tracking sensor insertion locations in a continuous analyte monitoring system. Data gathered from sensor sessions can be used in different ways, such as providing a user with a suggested rotation of insertion locations, correlating data from a given sensor session with sensor accuracy and/or sensor session length, and providing a user with a suggested next insertion location based upon past sensor accuracy and/or sensor session length at that location.Type: GrantFiled: September 19, 2023Date of Patent: April 8, 2025Assignee: Dexcom, Inc.Inventors: Katherine Yerre Koehler, Leif N. Bowman, Rian Draeger, Laura Dunn, Eli Reihman
-
Patent number: 12259351Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.Type: GrantFiled: May 2, 2019Date of Patent: March 25, 2025Assignee: Dexcom, Inc.Inventors: Peter C Simpson, Ted T Lee, Jonathan M Hughes, Stephen J. Vanslyke, Matthew D. Wightlin
-
Patent number: 12251187Abstract: The present disclosure is related to a sensing device. The sensing device includes a sensor, a memory, a processor, and two radio units. A first radio unit of the two radio units is configured for bidirectional communication with an external device using a first radio communication protocol. The bidirectional communication comprises receiving configuration data from the external device via a first radio signal from the external device. The second radio unit of the two radio units is configured for unidirectional communication with the external device using a second radio communication protocol. The unidirectional communication comprises the second radio unit transmitting a second radio signal to the external device. The second radio signal communicates data including one or more measurements obtained by the sensor.Type: GrantFiled: August 25, 2022Date of Patent: March 18, 2025Assignees: Dexcom, Inc., Verily Life Sciences LLCInventors: William James Biederman, Robert Francis Wiser, Brian Otis
-
Patent number: 12250768Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation bType: GrantFiled: October 17, 2023Date of Patent: March 11, 2025Assignee: DexCom, Inc.Inventors: Sean Frick, Louis Jung, David Lari
-
Patent number: 12246166Abstract: Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.Type: GrantFiled: July 26, 2024Date of Patent: March 11, 2025Assignee: Dexcom, Inc.Inventors: John Michael Dobbles, Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
-
Patent number: 12239469Abstract: Certain aspects of the present disclosure provide techniques for processing and presenting analyte data. Some example aspects may describe techniques for generating and providing a user interface view of a user's performance report for display. Some example aspects may describe techniques for providing one or more user interface views for display on one or more widgets.Type: GrantFiled: February 23, 2022Date of Patent: March 4, 2025Assignee: Dexcom, Inc.Inventors: Alexis P. Hauptman, Douglas Scott Kanter, Janna Caryn Kimel, Lee Anne Marie Mojica Mercado, Sonya Ann Sokolash, Travis Kroeker
-
Patent number: 12232841Abstract: In some example embodiments, there is provided a method, which includes sending a message to a server, wherein the message includes a request for a share code to enable another user to access, via a first computer, analyte data obtained from a host-patient associated with a receiver and/or an analyte report for the host-patient associated with the receiver; receiving, in response to the sending, the share code generated by the server, wherein the share code comprises a checksum portion, a password portion, and an identifier portion indicative of the host-patient; generating a user interface view including the share code; and displaying the user interface view including the share code, wherein the share code enables the other user to access, via the first computer, the analyte data and/or the analyte report. Related systems, methods, and articles of manufacture are also disclosed.Type: GrantFiled: April 19, 2021Date of Patent: February 25, 2025Assignee: Dexcom, Inc.Inventors: Daniel Justin Wiedeback, Shane Philip Delmore, Jeremy Crawford Sloan, Justin E. Schumacher
-
Patent number: 12237064Abstract: An integrated circuit includes circuitry to control a process. The process includes adjusting fuzzy-logic control parameters based on received and retrieved blood glucose-related data, predicting blood glucose levels based on the received blood-glucose-related data, and generating control signals to control dispensing of insulin based on the received blood glucose-related data and the fuzzy-logic control parameters. The process may include predicting blood glucose levels based on the retrieved blood glucose-related data. The process may include transitioning between a post-meal correction protocol and a fasting protocol. The process may include transitioning from a post-meal correction protocol to a fasting protocol when a fasting criteria is satisfied.Type: GrantFiled: May 25, 2022Date of Patent: February 25, 2025Assignee: Dexcom, Inc.Inventors: Robert C. Kircher, Jr., Richard S. Mauseth, Jason N. Bishop, Donald P. Matheson, Suray Bhatia, Jeff A. Bilmes