Patents Assigned to DGE DR.-ING. GÜNTHER ENGINEERING GMBH
  • Patent number: 8747522
    Abstract: In a method for adsorptively drying purified biogas and regenerating laden absorbents, foreign matter is not allowed to enter the purified biogas, the content of methane in the gas remains virtually unchanged and the effort involved in regenerating the laden adsorbent is reduced. Drying and regeneration are effected in a closed biogas cycle, wherein separate layers based on silica gel and molecular sieves are used as the adsorbent. The biogas to be dried first flows through the silica gel layer. The adsorbent is regenerated with exclusively heated, dried biomethane having a temperature of up to 150° C. which, after contact with adsorbent, is recirculated to the outflow of purified biogas. After regeneration, the bed is cooled by biomethane, which is subsequently recirculated to the outflow of purified biogas. Methane-containing water accumulating during drying and regeneration is recirculated to the biogas generation and/or purification.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 10, 2014
    Assignee: DGE Dr.-Ing. Guenther Engineering GmbH
    Inventor: Lothar Guenther
  • Publication number: 20130000486
    Abstract: In a method for adsorptively drying purified biogas and regenerating laden absorbents, foreign matter is not allowed to enter the purified biogas, the content of methane in the gas remains virtually unchanged and the effort involved in regenerating the laden adsorbent is reduced. Drying and regeneration are effected in a closed biogas cycle, wherein separate layers based on silica gel and molecular sieves are used as the adsorbent. The biogas to be dried first flows through the silica gel layer. The adsorbent is regenerated with exclusively heated, dried biomethane having a temperature of up to 150° C. which, after contact with adsorbent, is recirculated to the outflow of purified biogas. After regeneration, the bed is cooled by biomethane, which is subsequently recirculated to the outflow of purified biogas. Methane-containing water accumulating during drying and regeneration is recirculated to the biogas generation and/or purification.
    Type: Application
    Filed: March 8, 2011
    Publication date: January 3, 2013
    Applicant: DGE DR.-ING. GUENTHER ENGINEERING GMBH
    Inventor: Lothar Guenther
  • Publication number: 20120135491
    Abstract: The invention relates to a method for producing biogas or sewage gas by a multi-stage anaerobic reaction of biomass and/or sludge. Considering the disadvantages of the known prior art, a method is to be provided that leads to a higher yield of raw gas or biogas and a higher content of methane in the raw gas and enables an economically improved operating method. To this end, the reaction is carried out in the first fermentation stage (F1) while maintaining a TS content of 3 to 8% and a volume load of 1 to 3 kg OTS/m3 d. In the second fermentation stage (F2), a further reaction of the solid matter phase is carried out while maintaining a TS content of 8 to 40% and a volume load of over 2 kg OTS/ m3 d. In the second fermentation stage, the fermentation substrate is set to a TS content that is higher than the TS content of the first stage. In both fermentation stages, the reaction is carried out in the range from slightly acidic to neutral (pH value 6.5 to 8).
    Type: Application
    Filed: August 2, 2010
    Publication date: May 31, 2012
    Applicant: DGE Dr.-ING GUENTHER ENGINEERING GMBH
    Inventor: Lothar Guenter
  • Patent number: 8187568
    Abstract: A method and system produce a synthesis gas from a biogas. The method provides a more economic process control and a higher yield. For this purpose hydrogen sulfide and carbon dioxide of the biogas are nearly completely separated in separate cleaning steps before a catalytic conversion of the biogas, wherein hydrogen sulfide is biologically removed by the admixture of oxygen and/or oxidation agents containing oxygen. The oxygen, or the oxidation agent, is dosed such that an excess of oxygen of at least 1.0 vol.-% is present in the cleaned biogas (methane gas). The biogas is concentrated without any dehumidification, heated, and mixed with superheated steam. Due to the excess of oxygen, thermal energy is additionally created during the reforming process by an exothermal oxidation of oxygen contained in the biogas together with hydrogen in the catalyst bed for the endothermal conversion of methane to the synthesis gas.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 29, 2012
    Assignee: DGE Dr. Ing. Guenther Engineering GmbH
    Inventor: Lothar Günther
  • Publication number: 20110244555
    Abstract: In a method for purifying biogas, components present in the biogas, such as carbon dioxide, sulfur compounds and ammonia, are separated in a plurality of different process stages. The method is characterized by low energy consumption and an increase in methane concentration of at least 10% while keeping methane losses low. In a first purifying step, carbon dioxide, hydrogen sulfide, ammonia and other organic water-soluble substances in the raw gas are removed at normal pressure or at overpressure of up to 6 bar in a wash column using fresh water, methane gas having a methane concentration of at least 65% is withdrawn at the head of the wash column. Methane and carbon dioxide dissolved in the washing water are sequentially separated from the contaminated washing water discharged from the washing stage in a first stripping column at normal pressure and subsequently in a second stripping column in a vacuum.
    Type: Application
    Filed: November 28, 2009
    Publication date: October 6, 2011
    Applicant: DGE DR.-ING. GUENTHER ENGINEERING GMBH
    Inventor: Lothar Günther
  • Publication number: 20110175032
    Abstract: A method and system produce a synthesis gas from a biogas. The method provides a more economic process control and a higher yield. For this purpose hydrogen sulfide and carbon dioxide of the biogas are nearly completely separated in separate cleaning steps before a catalytic conversion of the biogas, wherein hydrogen sulfide is biologically removed by the admixture of oxygen and/or oxidation agents containing oxygen. The oxygen, or the oxidation agent, is dosed such that an excess of oxygen of at least 1.0 vol.-% is present in the cleaned biogas (methane gas). The biogas is concentrated without any dehumidification, heated, and mixed with superheated steam. Due to the excess of oxygen, thermal energy is additionally created during the reforming process by an exothermal oxidation of oxygen contained in the biogas together with hydrogen in the catalyst bed for the endothermal conversion of methane to the synthesis gas.
    Type: Application
    Filed: August 12, 2008
    Publication date: July 21, 2011
    Applicant: DGE DR.-ING GÜNTHER ENGINEERING GMBH
    Inventor: Lothar Günther
  • Publication number: 20100282074
    Abstract: A method for regenerating an amine-containing scrubbing solution which is obtained during gas purification and in which CO2 and sulfur compounds are chemically bonded, as well as a system that is suitable for carrying out the method. The contaminated scrubbing solution is heated, compressed, and expanded in several stages such that CO2 and sulfur compounds are separated. The expanded scrubbing solution is subdivided into two partial streams, and one partial stream is recirculated into the process.
    Type: Application
    Filed: August 12, 2008
    Publication date: November 11, 2010
    Applicant: DGE DR.-ING. GÜNTHER ENGINEERING GMBH
    Inventor: Lothar Günther
  • Publication number: 20100024647
    Abstract: A method for separating methane and carbon dioxide from biogas and a device are intended for purifying biogas, wherein carbon dioxide is separated off from the biogas. The method is distinguished by an energetically favorable mode of operation. The biogas is passed under atmospheric pressure and standard temperature into an absorption column. While the biogas ascends through a packed bed, which has a surface area of 600 to 1200 m2/m3, and at a space velocity of 5 to 40 Nm3/m3h, carbon dioxide present in the biogas is bound in a wash liquid by chemosorption. The purified methane gas is taken off at the top of the absorption column at a defined flow velocity. Carbon dioxide bound in the wash liquid is removed by desorption at a relatively high pressure of 2 to 30 bar and a temperature of at least 120° C. Biogas may be separated into methane and CO2.
    Type: Application
    Filed: March 19, 2007
    Publication date: February 4, 2010
    Applicant: DGE DR.-ING. GÜNTHER ENGINEERING GMBH
    Inventor: Lothar Günther