Patents Assigned to Diamond Materials, INC
  • Patent number: 8021639
    Abstract: A method for rapidly synthesizing polycrystalline diamond, includes the steps of machining a large monolithic graphite piece, placing the starting graphite piece in direct contact with an activator piece composed of a nickel-base alloy, and subjecting the contacting pieces to high static pressure and high temperature for a time sufficient to cause the starting monolithic graphite piece to undergo complete transformation into diamond to yield monolithic polycrystalline diamond.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 20, 2011
    Assignee: Diamond Materials Inc.
    Inventors: Oleg A. Voronov, Bernard H. Kear
  • Patent number: 6942729
    Abstract: A design for high pressure/high temperature apparatus and reaction cell to achieve ˜30 GPa pressure in ˜1 cm volume and ˜100 GPa pressure in ˜1 mm volumes and 20-5000° C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: September 13, 2005
    Assignee: Diamond Materials, INC
    Inventor: Oleg A. Voronov
  • Patent number: 6783745
    Abstract: A new class of carbon materials and their synthesis. The new carbon materials are formed by high pressure and high temperature processing of fullerene based carbon powder. The new carbon materials are harder than graphite and can be harder than steel (what the starting fullerenes are single wall nanotubes) or almost as hard as diamond (when the starting fullerened arm C60 buckyballs). The physical attributes of the materials can also be controlled by the pressing and heating parameters. These new carbon materials are conductive like graphite and unlike diamond which is an insulator. The materials can be formed by powder metallurgy techniques into any shape (cylinders, balls, tubes, rods, cones, foils, fibers or others). The new materials can also be readily doped, converted to diamond, formed within a porous composite or converted to diamond within the porous composite.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: August 31, 2004
    Assignee: Diamond Materials, Inc.
    Inventors: Oleg A. Voronov, Gary S. Tompa