Abstract: The melting point of a test substance is determined by placing it in a capillary tube within a heated block. The temperature of the block and sample are gradually increased using an electrical heater. The output of a light emitting diode or solid state laser is coupled into an optical fiber that carries the radiation to the capillary tube containing the test substance. A second fiber that is connected to a detector collects radiation from the capillary tube. At the melting point of a solid, or possibly at the boiling point of a liquid, the light scattering and transmissive properties of the test substance change causing the light signal collected by the second fiber to change. The phase transition point is recorded as a change in the output voltage from the detector. The melting point detector is equipped with a number of ports for capillary tubes, fibers, light emitters and detectors so that many phase transition points of different samples can be determined in one heating cycle.
Abstract: The melting point of a test substance is determined by placing it in a capillary tube within a heated block. The temperature of the block and sample are gradually increased using an electrical heater. The output of a light emitting diode or solid state laser is coupled into an optical fiber that carries the radiation to the capillary tube containing the test substance. A second fiber that is connected to a detector collects radiation from the capillary tube. At the melting point of a solid, or possibly at the boiling point of a liquid, the light scattering and transmissive properties of the test substance change causing the light signal collected by the second fiber to change. The phase transition point is recorded as a change in the output voltage from the detector. The melting point detector is equipped with a number of ports for capillary tubes, fibers, light emitters and detectors so that many phase transition points of different samples can be determined in one heating cycle.