Patents Assigned to Digital Imaging Systems GmbH
-
Patent number: 7692700Abstract: A method used for the compensation of vignetting in digital cameras has been achieved. The compensation for vignetting is done in two steps. The first step is done during production of the camera unit and involves taking and analyzing an image of a test screen, preferably a gray test screen. This results in a set of e.g. 5×5 coefficients describing a polynomial surface. The second step is done for each image that is taken by the camera and involves calculating and applying a gain-table based on polynomial coefficients to all pixels of the image to compensate vignetting.Type: GrantFiled: March 4, 2003Date of Patent: April 6, 2010Assignee: Digital Imaging Systems GmbHInventors: Anders Johannesson, Ingemar Larsson
-
Patent number: 7670067Abstract: A shutter and aperture device of a miniature digital camera module is coupled to a moveable lens group and is controlled by a horological type stepper motor from a fixed position from outside the moveable lens group. The coupling element between the stepper motor and the shutter device is a mechanical drive apparatus that allows movement of the shutter device along an optical axis before, during and after adjustment of the shutter setting by the stepper motor. The stepper motor is driven with CMOS I/O allowing integration of all control circuitry, image processing circuitry and a pixel photo imager array into a system-on-chip integrated circuit chip.Type: GrantFiled: November 28, 2006Date of Patent: March 2, 2010Assignee: Digital Imaging Systems GmbHInventor: Hubert Utz
-
Patent number: 7663670Abstract: The present invention is related to providing, in association with an image, information related to the image capture device used to capture the image. In one embodiment, information related to a first static camera characteristic and camera setting information related to a first captured digitized image is embedded in the first captured digitized image using a watermark. The watermarked information may be used to identify the source or owner of the picture, and/or to aid in the more accurate reproduction of the image.Type: GrantFiled: February 4, 2002Date of Patent: February 16, 2010Assignee: Digital Imaging Systems GmbHInventor: Vahid Orboubadian
-
Patent number: 7657167Abstract: A horological motor of the Lavet motor concept is used to form an actuator to control movement of a lens system to reduce power consumption in digital camera units used in various electronic equipment, e.g. PDA's, mobile phones, digital still cameras and camcorders, and as a result increase battery life. The coils of the horological motor are driven with CMOS I/O signals eliminating the need for high current motor drivers and allowing the integration of all picture capture functions, including the light sensitive pixel array, into a single chip to form a system on chip implementation. A plurality of actuators is used to control a lens system comprising auto focus, zoom and shutter and iris functions. A gear transmission system is used to allow the motor of the actuator to move in micro step, which allows calibration of the motor against mechanical barriers.Type: GrantFiled: September 26, 2006Date of Patent: February 2, 2010Assignee: Digital Imaging Systems GmbHInventor: Hubert Utz
-
Patent number: 7623163Abstract: This invention is directed to imaging methods and systems for flexibly addressing and processing imaging pixel sensor elements. A novel architecture is described which allows for a highly integrated, low cost imager with high speed performance and good image quality. The imaging system provides on-the-fly color interpolation, color compensation (also called color correction, color maximization or white balance) and/or fixed pattern noise reduction. The hardware and/or software related to on-the-fly color interpolation, color compensation and/or fixed pattern noise reduction may be provided on-chip.Type: GrantFiled: November 3, 2006Date of Patent: November 24, 2009Assignee: Digital Imaging Systems GmbHInventor: Sarit Neter
-
Patent number: 7567732Abstract: Methods to convert the resolution of digital images have been achieved. The methods invented support the decrease or the increase of the resolution of digital images, even enlargement in one direction and decimation in the other direction. The methods invented are applicable for any color space used. In case of decimation the method invented combines an interpolation of source pixels to calculate the color values of the destination pixels and omitting some rows of source pixels. A linear interpolation method is used to get a fast result of the interpolation. In case of an enlargement of a digital image in one or two directions the method invented combines the calculation of the color values of the destination pixels by an interpolation of the nearest source pixels with an extrapolation of the destination pixels being close to the edge of the image according to the scale of the conversion of resolution in one or two directions.Type: GrantFiled: April 22, 2004Date of Patent: July 28, 2009Assignee: Digital Imaging Systems GmbHInventor: Detlef Schweng
-
Patent number: 7567273Abstract: A system is presented that applies M×N×K computational units to calculating image parameters on N picture images captured simultaneously by N digital camera devices, where there are N groups of frame grabber units, each containing M frame grabbers in which there are K computational units. The data operated on by a computational unit is separate and independent from the image data operated on by the other computational units. This results in a performance speedup of M×N×K compared to one computational unit making the same computations. A master frame grabber unit controls the illumination of the N digital camera devices, and synchronizes the illumination with the clocks of the N digital camera devices.Type: GrantFiled: November 3, 2004Date of Patent: July 28, 2009Assignee: Digital Imaging Systems GmbHInventors: Horst Knoedgen, Dirk Huettmann
-
Patent number: 7554590Abstract: A new method of reading an imager is achieved. The method comprises providing an imager array comprising n rows and m columns where a pair of rows can be read during a single row access time. A first image field is completed by sequentially reading and storing pixel values of pairs of adjacent rows of the imager array. The reading begins at a first row, and the reading stops when less than three rows are unread. Thereafter pixel values of the next row are read and not stored. Thereafter pixel values of the first row of the imager array are read and not stored. A second image field is completed by sequentially reading and storing pixel values of pairs of adjacent rows. The reading begins at the second row, the reading stops when less than two rows are unread.Type: GrantFiled: December 23, 2003Date of Patent: June 30, 2009Assignee: Digital Imaging Systems GmbHInventors: Nathaniel Joseph McCaffrey, Peter Zalud, Peter Levine, Gary Hughes
-
Patent number: 7548261Abstract: A photo-sensor image resolution adjustment apparatus is in communication with an array of image photo-sensors that are organized in columns and rows and have multiple sensor types arranged in a pattern such as a Bayer pattern to detect light. The photo-sensor image resolution adjustment apparatus has a photo-sensor array decimation circuit to partition the array of image photo-sensors into a plurality of sub-groups. A column averaging circuit averages the light conversion electrical signals from common color photo-sensors within the sub-groups. A row averaging circuit averages the common color adjacent light conversion electrical signals from color adjacent rows within the sub-groups in high light intensity condition. In low light conditions, a row binning circuit integrates the common color adjacent light conversion electrical signals from color adjacent rows within the sub-groups.Type: GrantFiled: November 30, 2004Date of Patent: June 16, 2009Assignee: Digital Imaging Systems GmbHInventors: Guang Yang, Taner Dosluoglu
-
Patent number: 7529427Abstract: Methods to zoom a region of interest from a digital image have been achieved. The methods invented support according to the scale of zooming the decrease or the increase of the resolution of digital images. The region of interest to be zoomed is variable; the destination image has a fixed size. In case of a decrease of the resolution of the region of interest the method invented combines interpolating source pixels to calculate the color values of the destination pixels and omitting some rows of source pixels. In case of enlargement the method invented combines interpolation of the source pixels to calculate the color values of the destination pixels, extrapolation of the destination pixels being close to the edge of the image, and replication of some of the interpolated rows of the destination image to gain additional rows according to the scale of the increase of resolution (enlargement) of a digital image.Type: GrantFiled: April 22, 2004Date of Patent: May 5, 2009Assignee: Digital Imaging Systems GmbHInventor: Detlef Schweng
-
Patent number: 7515183Abstract: A photo-sensor image resolution adjustment apparatus is in communication with an array of image photo-sensors that are organized in columns and rows and have multiple sensor types arranged in a pattern such as a Bayer pattern to detect light. The photo-sensor image resolution adjustment apparatus has a photo-sensor array decimation circuit to partition the array of image photo-sensors into a plurality of sub-groups. A column averaging circuit averages the light conversion electrical signals from common color photo-sensors within the sub-groups. A row averaging circuit averages the common color adjacent light conversion electrical signals from color adjacent rows within the sub-groups in high light intensity condition. In low light conditions, a row binning circuit integrates the common color adjacent light conversion electrical signals from color adjacent rows within the sub-groups.Type: GrantFiled: November 24, 2004Date of Patent: April 7, 2009Assignee: Digital Imaging Systems GmbHInventors: Guang Yang, Taner Dosluoglu
-
Patent number: 7505064Abstract: A test handler is controlled by a tester to transport, select, focus and test miniature digital camera modules. The modules are loaded onto a transport tray and moved on a conveyer to a robot. The robot selects the untested modules from the tray an alternately places the modules into two test stations. A first test station focuses and tests a first module while the second test station is loaded with a second module, thus burying the handling time for the modules within the test time. The robot returns tested modules to the transport tray, and when all modules on the tray are tested, moves the tray out of the test handler. A second tray with untested modules is positioned at the robot while the tested modules of the first tray are being focus fixed and sorted into part number bins. The overlap of operations buries handling time within the focus and test time so that the limitation of total test time is depending on focus and test operations.Type: GrantFiled: August 30, 2004Date of Patent: March 17, 2009Assignee: Digital Imaging Systems GmbHInventors: Horst Knoedgen, Dirk Huettmann
-
Patent number: 7486309Abstract: A test system for digital camera modules used in consumer electronics, e.g. cellular phones and PDA's is shown. The test system comprises of a tester and a module handler that is aimed at reducing test time by an order of magnitude. The Test system has an image-processing unit that uses N-parallel processor to reduce the computation time on a test image by approximately the number of parallel processors. The handler is controlled by the tester to select, focus and test small digital camera modules. There are two test stations in the handler, where a first test station performs tests on a first camera module while a second test station is loaded with a second camera module, thus burying the loading time within the test time.Type: GrantFiled: August 31, 2004Date of Patent: February 3, 2009Assignee: Digital Imaging Systems GmbHInventors: Horst Knoedgen, Dirk Huettmann
-
Patent number: 7486298Abstract: A method to convert line-based pixel data from an imager, e.g. a video camera into block-based pixel data with a minimum of buffer memory size has been achieved. Key of the invention is that as soon pixel data are read-out of a buffer memory, pixel data of the next image are written to the same position of the buffer memory as the pixels, which have been just read-out have been located. While in prior art the buffer memory required a capacity to store two images is, using the method invented, only a capacity to store one image required. A method to convert line-based pixel data for an image application reading-out column-wise has been illustrated in detail. This general method can be used for a multitude of image transformations and image compression methods e.g. for compression of pixel data as JPEG, for mirroring, tilting, rotating etc. of line-based pixel data.Type: GrantFiled: November 16, 2004Date of Patent: February 3, 2009Assignee: Digital Imaging Systems GmbHInventor: Detlef Schweng
-
Patent number: 7479994Abstract: A photo-sensor image resolution adjustment apparatus is in communication with an array of image photo-sensors that are organized in columns and rows and have multiple sensor types arranged in a pattern such as a Bayer pattern to detect light. The photo-sensor image resolution adjustment apparatus has a photo-sensor array decimation circuit to partition the array of image photo-sensors into a plurality of sub-groups. A column averaging circuit averages the light conversion electrical signals from common color photo-sensors within the sub-groups. A row averaging circuit averages the common color adjacent light conversion electrical signals from color adjacent rows within the sub-groups in high light intensity condition. In low light conditions, a row binning circuit integrates the common color adjacent light conversion electrical signals from color adjacent rows within the sub-groups.Type: GrantFiled: November 30, 2004Date of Patent: January 20, 2009Assignee: Digital Imaging Systems GmbHInventors: Guang Yang, Taner Dosluoglu
-
Patent number: 7479995Abstract: A circuit and method for correcting pixel output signals for fixed pattern noise. Pixels in a selected row of pixels are read after an integration period and the resulting signals are stored in a first sample and hold circuit for each column. The pixels in the selected row are then reset and immediately read again and the resulting signals are stored in a second sample and hold circuit for each column. The signals in the second sample and hold circuits are subtracted from the signals in the first sample and hold circuits to produce signals related to the light seen by the pixels in the selected row corrected for fixed pattern noise. The output of the first sample and hold circuits and second sample and hold circuits can be connected to a subtraction unit and sequentially activated so that a single subtraction unit is required for the entire imager.Type: GrantFiled: May 19, 2005Date of Patent: January 20, 2009Assignee: Digital Imaging Systems GmbHInventor: Taner Dosluoglu
-
Patent number: 7453502Abstract: A method used for the compensation of vignetting in digital cameras has been achieved. The compensation for vignetting is performed by multiplying pixel output of the sensor array with a correction factor. In a preferred embodiment of the invention all pixels are multiplied with an adequate correction factor. Alternatively pixels, being close to the center of the sensor array, can be left unchanged. Said correction factor can be calculated in a very fast and efficient way by using two constant factors describing the specific geometry of the lens/sensor array system and by multiplying a first of said factors with the square of the distance between a pixel and the center of the sensor array and by multiplying a second of said factors with the distance between a pixel and the center of the sensor array to the power of four. The result of the second multiplication is subtracted from the result of the first multiplication and this result is added to one to get the final correction factor.Type: GrantFiled: March 9, 2004Date of Patent: November 18, 2008Assignee: Digital Imaging Systems GmbHInventor: Detlef Schweng
-
Patent number: 7443432Abstract: A circuit and method for correcting for power supply voltage noise using two dummy pixels in each row of pixels of an imager having a number of pixels arranged in rows and columns are described. The dummy pixels are driven by the same power supply as the active pixels but do not have the capability to sense light energy. The first dummy pixel is read at the time the active pixels in a row are reset and stores a signal in a first dummy register related to the voltage level of the power supply at the time the active pixels are reset. The second dummy pixel is read at the time the active pixels in the row are read and stores a signal in a second dummy register related to the voltage level of the power supply at the time the active pixels are read. The signals in the first storage register and second storage register can then be used to correct the signals from the active pixels in the row for the effect of noise caused by power supply voltage level fluctuations.Type: GrantFiled: January 4, 2005Date of Patent: October 28, 2008Assignee: Digital Imaging Systems GmbHInventor: Taner Dosluoglu
-
Patent number: 7427734Abstract: A multiple photosensor pixel image sensor sense differentiated color components of light. The multiple photosensor pixel image sensor has a plurality of photo-sensing devices formed with the surface of the substrate. Each photo-sensing device has a structure adjusted to convert photons of the light to photoelectrons representative of a magnitude of the color component of the light for which the structure of the photo-sensing device is adjusted. Each multiple photosensor pixel image sensor includes at least one storage node to selectively receive photoelectrons from each photo-sensing device and triggering switches connected to selectively and sequentially transfer the photoelectrons from each of the plurality of photo-sensing devices to the storage node. At least one reset triggering switch is connected to the one storage node to place the storage node to a reset voltage level after integration and sensing of the photoelectrons.Type: GrantFiled: October 18, 2005Date of Patent: September 23, 2008Assignee: Digital Imaging Systems GmbHInventors: Guang Yang, Taner Dosluoglu
-
Patent number: 7423302Abstract: A pixel image sensor has a high shutter rejection ratio that prevents substrate charge leakage to a floating diffusion storage node of the pixel image sensor and prevents generation of photoelectrons within the floating diffusion storage node and storage node control transistor switches of the pixel image sensor. The pixel image sensor that prevents substrate charge leakage of photoelectrons from pixel image sensor adjacent to the pixel image sensor. The pixel image sensor is fabricated on a substrate with an isolation barrier and a carrier conduction well. The isolation barrier formed underneath the floating diffusion storage node allows effective isolation by draining away the stray carriers and preventing them from reaching the floating diffusion storage node. The carrier conduction well in combination with the deep N-well isolation barrier separates the pinned photodiode region from the deep N-well isolation barrier that is underneath the floating diffusion storage node.Type: GrantFiled: November 21, 2005Date of Patent: September 9, 2008Assignee: Digital Imaging Systems GmbHInventors: Taner Dosluoglu, Guang Yang