Abstract: A ground based wind turbine blade inspection system and method consists of a thermal imaging camera configured to detect propagating defects by acquiring thermal imaging data from a wind turbine blade when it is substantially at thermal equilibrium with respect to surrounding air and analyzing the thermal imaging data with a processor to identify thermal effects associated with latent defects caused by internal friction due to cyclic gravitational stresses and wind loads during normal turbine operation. The system permits latent defects to be identified using a ground-based in situ inspection before they become visually apparent, which allows repairs to be made economically while the blade is in place.
Abstract: A wind power turbine blade inspection system includes a sensor positioned on the blade root end bulkhead to receive airborne acoustic signals emanating from anomalies in rotating turbine blades during cyclic stress loading, a three axis accelerometer to determine the gravity vector and other sources of cyclic acceleration with respect to the acoustic signals and a signal analysis system configured to analyze the sensor and accelerometer signals to provide data for wind power asset management.
Abstract: A wind turbine blade inspection system includes a sensitive microphone positioned near the base of the turbine tower to receive acoustic signals emanating from anomalies in a rotating turbine blades and a signal analysis system configured to analyze the acoustic signals including Doppler analysis. The data may be centrally monitored and recorded for wind power asset management.