Abstract: A number of wafers of a same semiconductor device are inspected to generate a plurality of candidate defect lists for identifying systematic defects. Each candidate defect list comprises a plurality of candidate defects obtained from inspecting one of the wafers. Each candidate defect is represented by a plurality of defect attributes including a defect location. The candidate defects in every one or more candidate defect lists are processed as a set by stage one grouping and filtering to generate a stage one defect list for each set. The candidate defects in all the stage one defect lists are then processed together by stage two grouping and filtering to generate a final defect lists for systematic defects. The defect attributes of each defect and a design pattern clip extracted from a design database based on the defect location are used in the hierarchical grouping and filtering.
Abstract: A design-based manufacturing optimization (DMO) server comprises a distributed computing system and a DMO software module incorporating with a design scanner to scan and analyze design data of a semiconductor device for optimizing manufacturing of the semiconductor device. The DMO software module sets up a pattern signature database and a manufacturing optimization database, generates design-based manufacturing recipes, interfaces with manufacturing equipment through a manufacturing interface module, and interfaces with electronic design automation suppliers for the design data through a design interface module. The DMO server executes the design-based manufacturing recipes for manufacturing optimization.