Abstract: Disclosed is a radio-frequency divider comprising: an input port; and two output ports, separated by a bridge bar, wherein the divider is arranged in microstrip form and the microstrip structure takes the form of a generally tapering section connecting the input port to the bridge bar such that the input port is positioned at the relatively thinner end of the tapering section and the bridge bar is positioned at the relatively wider end of the tapering section. Also disclosed is a corresponding method. The divider is able to operate equally as a combiner.
Abstract: Embodiments are directed to a RF combiner/splitter having a first port separated from a second port and a third port by a generally tapering microstrip section. The second and third ports are separated by a generally rectangular bridge bar having a width selected to match the impedance of devices to be connected to the second and third ports and a length selected to provide a separation between the second and third ports of approximately quarter wavelength at a center point of an operational frequency of the devices. In a first embodiment, a horizontal RF choke joint is positioned between the first port and the tapering section. In a second embodiment, one choke joint is positioned between the second port and the bridge bar and a second choke joint is positioned between the third port and the bridge bar.
Abstract: Disclosed is a logarithmic detector comprising: an amplifier element; means for setting a frequency of operation of the detector; and a controller, wherein an input signal to the amplifier element is arranged to cause an oscillation in the amplifier element, and the controller is operable to sense a pre-determined threshold, indicative of oscillation and, in response to sensing said threshold, to interrupt the oscillation of the amplifier such that the frequency of said interruption is proportional to the logarithm of the power of the input signal.