Abstract: A magnetron circuit of a rectangular type is disposed on a lower surface of a rectangular target. A half of the target is covered with a shield plate, so that sputtering particles sputtered from an erosion region (a region with a maximized magnetic flux density) therebelow is blocked so as not to fly toward a substrate. The substrate is disposed at a level so as to be located in a plasma region of a vacuum chamber, and sputtering particles (ZnO) sputtered from a region exposed from the shield plate in the erosion region is caused to be incident on a surface of the substrate. When a gas pressure is lowered, a mean free path of each of the sputtering particles is lengthened to cause a large amount of high-energy sputtering particles to be incident. As a result, a hexagonal crystal particle having a plane that is a crystal plane hardly damaged by incidence of the high-energy sputtering particles is preferentially grown to form a c-axis in-plane oriented film.
Type:
Application
Filed:
November 22, 2007
Publication date:
June 3, 2010
Applicants:
OMRON CORPORATION, DOSHISYA UNIVERSITY