Abstract: This disclosure concerns nucleic acid molecules and methods of use thereof for control of pathogens through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in pathogens. The disclosure also concerns methods for applying dsRNA through formulations and/or transgenic plants that express nucleic acid molecules useful for the control of pathogens, and the plant cells and plants obtained thereby.
Type:
Grant
Filed:
October 3, 2018
Date of Patent:
February 9, 2021
Assignee:
Dow AgroSciences LLC
Inventors:
Javier A. Delgado, Justin M. Lira, Michael T. Sullenberger, Robert Cicchillo
Abstract: Embodiments of the invention include stable compositions comprising: an active ingredient, a dispersant, a latex, and water, wherein the active ingredient and the latex in the composition remain substantially separate. Further embodiments include methods of applying the compositions to an area to control undesirable plant growth, fungal pathogens or insects.
Type:
Grant
Filed:
December 13, 2012
Date of Patent:
January 26, 2021
Assignee:
Dow AgroSciences LLC
Inventors:
Melissa G. Olds, Holger Tank, Toshiya Ogawa
Abstract: This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
Type:
Application
Filed:
March 21, 2019
Publication date:
January 21, 2021
Applicant:
DOW AGROSCIENCES LLC
Inventors:
TIMOTHY P. MARTIN, RONALD ROSS, Jr., RONALD J. HEEMSTRA, JOSEPH D. ECKELBARGER, TONY K. TRULLINGER, RICKY HUNTER, MARTIN J. WALSH
Abstract: This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses a molecule having the following formula.
Type:
Grant
Filed:
May 20, 2019
Date of Patent:
January 19, 2021
Assignee:
DOW AGROSCIENCES LLC
Inventors:
Yu Zhang, Tony K. Trullinger, Carla J. R. Klittich, Ricky Hunter
Abstract: The subject invention concerns new classes of insecticidally-active proteins and the polynucleotide sequences which encode these proteins. More specifically, insecticidal proteins of approximately 12-24 kDa and of approximately 12-14 kDa are used for controlling corn rootworms. The subject invention includes methods and transgenic plants for controlling Western Corn Rootworm and other coleopteran insects.
Type:
Grant
Filed:
September 20, 2017
Date of Patent:
January 12, 2021
Assignee:
DOW AGROSCIENCES LLC
Inventors:
Kenneth E. Narva, Huarong Li, Sek Yee Tan, Tao Xu, Timothy D. Hey, Vimbai Chikwana, Sarah E. Worden
Abstract: This invention relates to methods for identifying sunflower plants that having increased Orobanche resistance. The methods use molecular markers to identify and to select plants with increased Orobanche resistance. Maize plants generated by the methods of the invention are also a feature of the invention.
Type:
Grant
Filed:
April 5, 2018
Date of Patent:
January 5, 2021
Assignee:
Dow AgroSciences LLC
Inventors:
Wenxiang Gao, Van L. Ripley, Chandra-Shekar A. Channabasavaradhya, David H. Meyer, Leonardo Velasco, Robert M. Benson, Begona Perez Vich, Angela L. Erickson, Jose Maria Fernandez Martinez, Ruihua Ren, Milan Avery
Abstract: A method of enhancing milk production efficiency in dairy cattle that comprises feeding the dairy cattle with a feed ration comprising a corn silage made from a brown midrib/floury-2 corn hybrid. Upon being fed to dairy cows, a feed ration comprising brown midrib/floury-2 corn silage provides at least about 4% higher in the amount of milk produced per unit of the feed intake, compared to a feed ration comprising non-brown midrib corn silage.
Abstract: DIG-303 insecticidal toxins, polynucleotides encoding such toxins, use of such toxins to control pests, and transgenic plants that produce such toxins are disclosed.
Type:
Grant
Filed:
October 30, 2015
Date of Patent:
December 29, 2020
Assignee:
DOW AGROSCIENCES LLC
Inventors:
Meghan L. F. Frey, Justin M. Lira, Xiaoping Xu, Ignacio Mario Larrinua, Kenneth Narva, Timothy D Hey
Abstract: This disclosure concerns compositions and methods for promoting transcription of a nucleotide sequence in a plant or plant cell, employing a promoter from a GmPSID2 gene. Some embodiments relate to a promoter or a 5? UTR from a GmPSID2 gene that functions in plants to promote transcription of operably linked nucleotide sequences. Other embodiments relate to a 3? UTR or a terminator from a GmPSID2 gene that functions in plants to promote transcription of operably linked nucleotide sequences.
Abstract: The subject invention relates to a novel gene referred to herein as DSM-2. This gene was identified in Streptomyces coelicolor A3. The DSM-2 protein is distantly related to PAT and BAR. The subject invention also provides plant-optimized genes encoding DSM-2 proteins. DSM-2 can be used as a transgenic trait to impart tolerance in plants and plant cells to the herbicides glufosinate and bialaphos. One preferred use of the subject genes are as selectable markers. The use of this gene as a selectable marker in a bacterial system can increase efficiency for plant transformations. Use of DSM-2 as the sole selection marker eliminates the need for an additional medicinal antibiotic marker (such as ampicillin resistance) during cloning. Various other uses are also possible according to the subject invention.
Type:
Application
Filed:
August 20, 2020
Publication date:
December 10, 2020
Applicant:
Dow AgroSciences LLC
Inventors:
Justin M Lira, Terry Wright, Andrew E. Robinson, Sean Russell, Donald J Merlo, Steven Webb, Nicole L Arnold, Kelley E Smith
Abstract: The subject invention relates to a novel gene referred to herein as DSM-2. This gene was identified in Streptomyces coelicolor A3. The DSM-2 protein is distantly related to PAT and BAR. The subject invention also provides plant-optimized genes encoding DSM-2 proteins. DSM-2 can be used as a transgenic trait to impart tolerance in plants and plant cells to the herbicides glufosinate and bialaphos. One preferred use of the subject genes areas selectable markers. The use of this gene as a selectable marker in a bacterial system can increase efficiency for plant transformations. Use of DSM-2 as the sole selection marker eliminates the need for an additional medicinal antibiotic marker (such as ampicillin resistance) during cloning. Various other uses are also possible according to the subject invention.
Type:
Application
Filed:
August 20, 2020
Publication date:
December 10, 2020
Applicant:
Dow AgroSciences LLC
Inventors:
Justin M Lira, Terry Wright, Andrew E. Robinson, Sean Russell, Donald J Merlo, Steven Webb, Nicole L Arnold, Kelley E Smith
Abstract: The current disclosure relates to methods and compositions for improving plant varieties through plant breeding and plant genetics. For instance, the disclosure concerns increasing the recombination frequency of a heterozygous trait genetically linked to a second trait within plants. Further, the disclosure concerns breaking the genetic linkage between a first allele and a second allele.
Type:
Application
Filed:
August 17, 2020
Publication date:
December 3, 2020
Applicant:
Dow AgroSciences LLC
Inventors:
Sandeep Kumar, Ryan M. Lee, Stephen Novak, Andrew F. Worden
Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
Type:
Grant
Filed:
April 23, 2019
Date of Patent:
November 24, 2020
Assignees:
Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
Inventors:
W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
Abstract: This disclosure concerns compositions and methods for increasing the expression of a polynucleotide of interest. Some embodiments concern novel transactivation polypeptides and variants thereof that have been identified in plants, and methods of using the same. Particular embodiments concern the use of at least one DNA-binding polypeptide in a fusion protein to target at least one transactivation polypeptide or variant thereof to a specific binding site on a nucleic acid comprising the polynucleotide of interest, such that its expression may be increased.
Type:
Grant
Filed:
May 2, 2019
Date of Patent:
November 17, 2020
Assignee:
Dow Agrosciences LLC
Inventors:
Joseph Petolino, Jianquan Li, Steven L. Evans, Ryan C. Blue
Abstract: This disclosure concerns compositions and methods for promoting transcription of a nucleotide sequence in a plant or plant cell, employing a promoter from a GmCAB2 gene. Some embodiments relate to a promoter or a 5? UTR from a GmCAB2 gene that functions in plants to promote transcription of operably linked nucleotide sequences. Other embodiments relate to a 3? UTR or a terminator from a GmCAB2 gene that functions in plants to promote transcription of operably linked nucleotide sequences.
Type:
Application
Filed:
October 29, 2018
Publication date:
November 5, 2020
Applicants:
DOW AGROSCIENCES LLC, PIONEER HI-BRED INTERNATIONAL, INC.
Inventors:
Lyudmila Sidorenko, Cory M. Larsen, Geny Anthony, Shreedharan Sriram, Holly Jean Butler, Lynne E. Sims, Scott H. Diehn, Gilda M. Rauscher, Kevin G. Ripp, Knut Meyer
Abstract: Methods to generate doubled haploid plants and plant components using low mammalian toxicity chromosome doubling agents are disclosed. Chromosome doubling agents provide low mortality rates and higher chromosome doubling rate in plants.
Type:
Grant
Filed:
May 23, 2017
Date of Patent:
October 13, 2020
Assignee:
Dow AgroSciences LLC
Inventors:
Yunxing Cory Cui, Paul Schmitzer, David H. Young
Abstract: IRDIG35563 vegetative insecticidal toxins, polynucleotides encoding such toxins, use of such toxins to control pests, and transgenic plants that produce such toxins are disclosed. The invention includes IRDIG35563 variants, fragments and analogs.
Type:
Application
Filed:
September 26, 2018
Publication date:
October 8, 2020
Applicant:
DOW AGROSCIENCES LLC
Inventors:
MARC D ZACK, MEGAN SOPKO, JAMES M HASLER
Abstract: This disclosure concerns compositions and methods for promoting transcription of a nucleotide sequence in a plant or plant cell, employing a promoter from a GmTEFs1 gene. Some embodiments relate to a promoter or a 5? UTR from a GmTEFs1 gene that functions in plants to promote transcription of operably linked nucleotide sequences. Other embodiments relate to a 3? UTR or a terminator from a GmTEFs1 gene that functions in plants to promote transcription of operably linked nucleotide sequences.
Type:
Application
Filed:
October 31, 2018
Publication date:
October 8, 2020
Applicant:
Dow AgroSciences LLC
Inventors:
Lyudmila Sidorenko, Cory M. Larsen, Geny Anthony, Shreedharan Sriram, Holly Jean Butler
Abstract: This disclosure concerns methods for the design of synthetic nucleic acid sequences that encode polypeptide amino acid repeat regions. This disclosure also concerns the use of such sequences to express a polypeptide of interest that comprises amino acid repeat regions, and organisms comprising such sequences.
Type:
Grant
Filed:
July 16, 2013
Date of Patent:
October 6, 2020
Assignee:
Dow AgroSciences LLC
Inventors:
Donald J. Merlo, Ignacio Larrinua, Scott Bevan