Patents Assigned to Dow Global Technologies LLC
  • Publication number: 20200353432
    Abstract: A pulsed compression reactor may include a reactor housing, a spring piston, and a driver piston. The reactor housing may define an interior volume, and may include a first passage and a second passage which lead to the interior volume. The spring piston may be positioned within the interior volume, wherein the spring piston and the reactor housing at least partially define a perimeter of a gas spring buffer chamber within the interior volume. The driver piston may be positioned within the interior volume, wherein the spring piston, the driver piston, and the reactor housing at least partially define a perimeter of a reaction chamber within the interior volume.
    Type: Application
    Filed: October 24, 2018
    Publication date: November 12, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Cornelis Biesheuvel, Adrianus C. De Kok, Hendrik L. Pelt, Wim M. Kamperman
  • Publication number: 20200353716
    Abstract: External thermal insulation composite systems described herein include a concrete or masonry wall and a multilayer thermal insulation board disposed on the concrete or masonry wall. The multilayer thermal insulation board includes at least one closed cell foam layer comprising polyurethane and polyisocyanurate having an open cell volume of less than 20% by volume according to ASTM D 6226 and at least one open cell foam layer comprising polyurethane and polyisocyanurate having an open cell volume of greater than 80% by volume according to ASTM D 6226.
    Type: Application
    Filed: November 7, 2018
    Publication date: November 12, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Giuseppe Vairo, Elena Ferrari, Luigi Bertucelli, Alberto Fangareggi
  • Patent number: 10829432
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 70% of catalyst volume, and wherein oxygen concentration at a reactor outlet is from 0.5 to 7.5 mol %.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Dmitry A. Krapchetov, Christopher D. Frick, Daniel A. Hickman, Jeffrey Herron, Kurt D. Olson, D. Wayne Blaylock, Victor Sussman, Wen-Sheng Lee
  • Patent number: 10829433
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 50% of catalyst volume.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Christopher D. Frick, Victor Sussman, Wen-Sheng Lee
  • Patent number: 10829431
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting in a reactor a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns, wherein oxygen concentration at a reactor outlet is from 0.5 to 7.5 mol % and wherein the reactor comprises a partition with the catalyst bed on a first side of the partition and with flow through the catalyst bed in a first direction and flow on a second side of the partition in an opposite direction.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Dmitry A. Krapchetov, Christopher D. Frick, Daniel A. Hickman
  • Patent number: 10829434
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and average concentration of methacrolein is at least 15 wt %.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Dmitry A. Krapchetov, Kirk W. Limbach, Daniel A. Hickman, Andrew T. Heitsch, Victor Sussman, Wen Sheng Lee, Ramzy Shayib
  • Patent number: 10829288
    Abstract: Container (1) having a container body (10) having a sealing lip (12). The container (1) comprises a bottom perforated film (20) adhered to the sealing lip (12) at a first adhesion strength (S1), a top film (30) adhered to the bottom perforated film (20) at a second adhesion strength (S2) at locations not vertically aligned with a seal end (38), and wherein the top film (30) adheres to the bottom perforated film (20) at a third adhesion strength (S3) at the seal end (38). The third adhesion strength (S3) is greater than the first adhesion strength (S1) which is greater than the second adhesion strength (S2), such that the top film (30) is peelable relative to the bottom perforated film (24) at the opening end (36), and the top film (30) is peelable with the bottom perforated film (20) relative to the container body (10) at the seal end (38).
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 10, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Andre Farstad, Maria Isabel Arroyo Villan, Marcelo Tognola
  • Patent number: 10829435
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol; said method comprising contacting in a reactor a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein pH at the reactor outlet is from 3 to 6.7.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Dmitry A. Krapchetov, James Elder, William G. Worley, Kirk W. Limbach, Daniel A. Hickman, Alexey Kirilin, Wen Sheng Lee, Victor Sussman
  • Patent number: 10822437
    Abstract: The instant invention provides a polyethylene composition and process for polymerizing the same. The polyethylene composition according to the present invention comprises the polymerization reaction of ethylene and optionally one or more ?-olefin comonomers in the presence of a catalyst system, wherein said polyethylene composition comprises at least 2 or more molecular weight distributions, measured via triple detector GPC low angle laser light scattering (GPC-LALLS), described in further details hereinbelow, wherein each molecular weight distribution has a peak, and wherein measured detector response of peak 1 divided by the measured detector response of peak 2 is in the range of from 0.50 to 0.79, for example from 0.55 to 0.77.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: November 3, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Ronald P. Markovich, Robert J. Jorgensen
  • Patent number: 10822297
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol; said method comprising contacting in a reactor a mixture comprising methacrolein, methanol and oxygen with a catalyst bed of heterogeneous catalyst comprising a support and a noble metal, wherein base is added to the reactor while maintaining time to reach 95% homogeneity at no greater than 10 minutes.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 3, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Justin Walker, Alan L. Stottlemyer, Jeffrey Herron
  • Publication number: 20200338542
    Abstract: The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
    Type: Application
    Filed: June 8, 2020
    Publication date: October 29, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Jerzy Klosin, Kara A. Milbrandt, Scott D. Boelter, David R. Wilson, Mari S. Rosen, Dean M. Welsh, Peter M. Margl, Kyoung Moo Koh, David M. Pearson, Rafael Huacuja
  • Patent number: 10815375
    Abstract: The invention provides a composition comprising an ethylene-based polymer and wherein the ethylene-based polymer has the following properties: (A) a CO content from greater than 0 to less than 10 weight percent CO (carbon monoxide), based on the weight of the polymer, and (B) a melt index (I2) from 0.1 to less than 3 g/10 min; and (C) a density from 0.923 to 0.928 g/cc; and wherein the ethylene-based polymer has a melting point, Tm, in ° C., that meets the following relationship: Tm (° C.)<601.4*(Density N in g/cc)?447.8° C.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 27, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Alfred E. Vigil, Jr., Frances Olajide, Jr., Lori L. Kardos
  • Patent number: 10815321
    Abstract: A process for producing an ethylene-based polymer comprises polymerizing, by the presence of at least one free-radical initiator and using a high pressure tubular polymerization process, a reaction mixture containing ethylene and at least one CTA system comprising one or more CTA components to produce the ethylene-based polymer. The free-radical initiator is dissolved in a solvent comprising a saturated hydrocarbon to form an initiator solution which is added to the polymerization using an initiator feed line to an initiator injection pump. At least 50 wt % of the solvent has i) a dry point of less than or equal to 160° C. and ii) an initial boiling point of greater than or equal to 100° C. The polymerization process has a ratio of inlet pressure to first peak temperature of less than or equal to 9 Bar/° C.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 27, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Cornelis F J Den Doelder, Stefan Hinrichs, Eva-Maria Kupsch, Otto J. Berbee, Rajesh P. Paradkar, Bernard A. Fehr, Carmelo Declet Perez
  • Patent number: 10818860
    Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 27, 2020
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Anatoliy N Sokolov, Brian Goodfellow, Robert David Grigg, Liam P Spencer, John W Kramer, David D Devore, Sukrit Mukhopadhyay, Peter Trefonas, III
  • Patent number: 10815331
    Abstract: The present invention discloses a polymeric polyol composition useful for making polyurethane polymers, especially polyurethane foams. Said polyurethane polymer foams demonstrate a good balance of mechanical properties, physical properties, and low emissions. The polymeric polyol composition is the reaction product(s) of (i) a polyamine initiator composition comprising the polymerization product(s) of aminoethylpiperazine with (ii) at least one epoxide compound, at least one glycidyl ether compound, or mixtures thereof.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 27, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Michael T. Malanga, Sabrina Fregni, George J. Frycek, Stephen W. King, Jean-Paul Masy, Sadeka Onam
  • Publication number: 20200332036
    Abstract: Embodiments of a polymer compositions and articles comprising such compositions contain at least one multimodal ethylene-based polymer, wherein the multimodal ethylene-based polymer exhibits superior low temperature performance.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 22, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Didem Oner-Deliormanli, Yijian Lin, Mehmet Demirors, Jong-young Lee, David T. Gillespie
  • Publication number: 20200332217
    Abstract: The present disclosure provides for a lubricant formulation and a method of forming the lubricant formulation for use in an internal combustion engine. The lubricant formulation includes a base oil and an esterified oil-soluble polyalkylene glycol (E-OSP) of Formula (I): R1 [O(R2O)n(R3O)m(C?O)R4]p wherein R1 is a linear alkyi having 1 to 18 carbon atoms, a branched alkyl having 4 to 18 carbon atoms or an aryl with 6 to 30 carbon atoms; R2O is an oxypropylene moiety derived from 1, 2-propylene oxide; R3O is an oxvbutvlene moiety derived from butylene oxide, wherein R2O and R3O are in a block or a random distribution; R4 is a linear alkyl with to 18 carbon atoms, a branched alkyl with 4 to 18 carbon atoms or an aryl with 6 to 18 carbon atoms; n and m are each independently integers ranging from 0 to 20 wherein n+m is greater than 0, and p is an integer from 1 to 4.
    Type: Application
    Filed: December 25, 2017
    Publication date: October 22, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Martin R. Greaves, Yaokun Han, Yong Zhao
  • Publication number: 20200332101
    Abstract: A composition comprising (A) from 10 wt % to 90 wt % of a propylene component including at least one propylene based polymer having a propylene content of at least 50.0 wt %, based on the total weight of the propylene based polymer, and a melt flow rate from 0.5 g/10 min to 200.0 g/10 min (ASTM D-1238 at 230° C., 2.16 kg); (B) from 1 wt % to 60 wt % of a polyolefin elastomer; (C) from 1 wt % to 20 wt % of a block composite comprising (i) an ethylene-propylene copolymer, (ii) an isotactic polypropylene copolymer, and (iii) a block copolymer including an ethylene-propylene soft block that has a same composition as the ethylene-propylene copolymer of the block composite and an isotactic polypropylene hard block that has a same composition as the isotactic polypropylene copolymer of the block composite; and (D) optionally, from 0.1 wt % to 10 wt % of an antioxidant.
    Type: Application
    Filed: May 24, 2017
    Publication date: October 22, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Olaf HENSCHKE, Yahong ZHANG, Wei LI, Hang WU, Takahiko OHMURA, Yushan HU, Ming MING, Krischan JELTSCH
  • Patent number: 10808074
    Abstract: The present invention relates to a compound having the following structure I: where Ar1, Ar2; R1, m, and n are defined herein. The compound of the present invention is useful as an open time additive in waterborne coatings compositions, particularly waterborne paint compositions.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 20, 2020
    Assignees: Rohm and Haas Company, Dow Global Technologies LLC
    Inventors: Edward D. Daugs, John J. Rabasco, Antony K. Van Dyk, Tianlan Zhang
  • Patent number: 10808999
    Abstract: A process for recovery of C2 and C3 components in an on-purpose propylene production system includes utilizing a packed rectifier with a countercurrent stream to strip C2 and C3 components from a combined de-ethanizer overhead lights vapor and cracked gas vapor stream.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: October 20, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Isa K. Mbaraka, William L. Jackson, Jr., Martin A. Cogswell, Mark Siddoway, Brien A. Stears