Patents Assigned to Dow Technology Investments LLC
  • Patent number: 8343433
    Abstract: Apparatus, methods, and processes are provided for a tube reactor including multiple, substantially parallel reaction tubes arranged within a tube reactor shell, the reaction tubes spaced apart such that a thermal fluid can flow between the tubes and transfer heat between the tubes and the thermal fluid during operation; an inlet head defining an inlet head space, where the inlet head space is in fluid communication with an inlet end of the reaction tubes, and an outlet head including an outlet head shell and at least one insert positioned within an outlet head space defined by the outlet head, where the insert defines a reduced volume outlet head space relative to that defined by the outlet head, and where the reduced volume outlet head space is in fluid communication with an outlet end of the reaction tubes and in fluid communication with a reactor outlet.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 1, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Fred A. Conneway, Harvey E. Andresen, Clarence P. Stadlwieser, Donald L. Kurle, Bernie B. Osborne
  • Patent number: 8334395
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen gas in a gas mixer in the presence of coarse water droplet environment, e.g., a ‘rainy’ or ‘driving rainstorm’ environment in which the water droplets generally have a size greater than 200 microns SMD. The water droplets surround and contact entrained particles in either the oxygen gas stream or the hydrocarbon-containing gas stream. The water acts to suppress, prevent and quench ignition of the hydrocarbon gas in the mixer which would otherwise be caused by energetic collisions between such particles and structures within the gas mixer. In one configuration the gas mixer includes water pipes having coarse water droplet-producing nozzles at the peripheral end thereof concentrically located within oxygen supply pipes. Additionally, nozzles introduce coarse water droplets into a pipe carrying the hydrocarbon gas and forming a mixing chamber for the hydrocarbon and oxygen gases.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: December 18, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20120302776
    Abstract: Embodiments of the present disclosure provide processes, columns, and systems for removing acetaldehyde from alkylene oxide in a feed stream and for providing an alkylene oxide-water stream that can be directly transferred to a glycol reaction process. The alkylene oxide purification column includes a first section to convert a feed stream into a gas phase portion and a liquid phase portion and a second section located in the column above the first section to separate alkylene oxide from the acetaldehyde, water, and other impurities that enter the second section from the first section.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: John F. Szul, James H. McCain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8309771
    Abstract: A two-stage, gas phase process for manufacturing alkylene glycol (e.g., ethylene glycol) from an alkene (e.g., ethylene), oxygen and water, the process comprising the steps of: (A) Contacting under gas phase, oxidation conditions gaseous alkene and oxygen over a heterogeneous oxidation catalyst to produce a gaseous oxidation product comprising alkylene oxide, water and unreacted alkene; (B) Contacting under gas phase, hydrolysis conditions the gaseous oxidation product of (A) with added water over a heterogeneous hydrolysis catalyst to produce a gaseous alkylene glycol and unreacted alkene; and (C) Recycling the unreacted alkene of (B) to (A). The hydrolysis catalyst is selected from the group consisting of hydrotalcites, metal-loaded zeolites, phosphates, and metal-loaded ion-exchanged molecular sieves.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 13, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: Joseph C. Noronha, Elbert J. Campbell, Brian T. Keen, Dick A. Nagaki, Hwaili Soo, David A. Spears, John F. Szul
  • Patent number: 8293949
    Abstract: The present invention provides a process for producing low color glycols that comprises altering at least one condition of a reaction component and/or process stream within the process to be unfavorable for the formation of at least one color-producing contaminant intermediate. As such, such intermediates may be reduced in concentration, or even eliminated entirely, from glycols produced by the process. Since they are not present, or are present in reduced number, the intermediates cannot form color-producing contaminants in the glycols, and low color glycols are provided to the customer. Any condition that can discourage the formation of color forming contaminant intermediates can be adjusted, although conditions that can be adjusted by materials or equipment already utilized in the process, e.g.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 23, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: Zdravko I. Stefanov, Jean Paul Chauvel, Jr., Abraham Gonzalez, Istvan Lengyel
  • Patent number: 8257558
    Abstract: Embodiments of the present disclosure provide processes, columns, and systems for removing acetaldehyde from alkylene oxide in a feed stream and for providing an alkylene oxide-water stream that can be directly transferred to a glycol reaction process. The alkylene oxide purification column includes a first section to convert a feed stream into a gas phase portion and a liquid phase portion and a second section located in the column above the first section to separate alkylene oxide from the acetaldehyde, water, and other impurities that enter the second section from the first section.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 4, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. Mccain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8183400
    Abstract: Embodiments of the present disclosure include processes and systems for recovering alkylene oxide. System embodiments include a stripping section located in an alkylene oxide recovery column to convert a feed stream comprising to a first gas phase portion comprising alkylene oxide, a condensing zone comprising at least a first condenser and a second condenser configured in series, and a reabsorption region located in the alkylene oxide recovery column above the last of the at least two condensers.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 22, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. Mccain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8129551
    Abstract: The invention relates to improved systems for recovery of alkylene oxide from feed streams containing the same in an alkylene oxide recovery column. The invention also relates to improved processes for recovery of alkylene oxide from feed streams containing the same in an alkylene oxide recovery column.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 6, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. Mccain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8084632
    Abstract: A method for enhancing the efficiency of a rhenium-promoted epoxidation catalyst is provided. Advantageously, the method may be carried out in situ, i.e., within the epoxidation process, and in fact, may be carried out during production of the desired epoxide. As such, a method for the epoxidation of alkylenes incorporating the efficiency-enhancing method is also provided, as is a method for using the alkylene oxides so produced for the production of 1,2-diols, 1,2-carbonates, 1,2-diol ethers, or alkanolamines.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: December 27, 2011
    Assignee: Dow Technology Investments LLC
    Inventors: Albert C. Liu, Liping Zhang
  • Patent number: 8053586
    Abstract: Systems and processes for recovering alkylene oxide, including an alkylene oxide recovery column including a stripping section located in the column to convert a portion of a feed stream to a gas phase including alkylene oxide; a reabsorption section in the column above the stripping section including a water stream to reabsorb the alkylene oxide in the gas phase portion and to produce an aqueous solution, a first stripping gas to strip carbon dioxide and oxygen from the aqueous solution by converting a portion of the aqueous solution to a gaseous portion, producing an alkylene oxide stream, and a side take-off located at a bottom portion of the reabsorption section for removal of the alkylene oxide stream; a condenser to partially condense the gas phase portion; and a top take-off for removal of a light impurity fraction.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 8, 2011
    Assignee: Dow Technology Investments LLC
    Inventors: Bernie B. Osborne, Fred A. Conneway, Clarence P. Stadlwieser, Harvey E. Andresen
  • Publication number: 20110160470
    Abstract: A plant and process for producing alkylene oxides to control the production of silver chloride on a high efficiency silver catalyst is disclosed and described. The process involves reacting an alkylene and an organic chloride gas phase promoter with oxygen over the high efficiency silver catalyst. The sulfur concentration in the alkylene oxide reactor feed is controlled to reduce the production of silver chloride which acts as a catalyst poison.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: William H. Henstock, Juliana G. Serafin, Albert C. Liu, Hwaili Soo, Yujun Liu, Manuk Colakyan, Sagar Petkar
  • Publication number: 20100307337
    Abstract: A gas mixer (10) for mixing a first gas stream with a second gas stream includes an impact labyrinth (24) in the first gas stream having structures (25), e.g., corrugated walls, forming a tortuous path through which the first gas stream must pass en route to a mixing point (20) in the gas mixer. The labyrinth fosters ignition of particles entrained in the first gas stream. Elongate, straight pipes (30) receive the first gas stream from the impact labyrinth (24) and carrying the first gas stream to the mixing point (20) the pipes (30) are positioned with a vessel (12) carrying the second gas stream. The pipes (30) have openings which are substantially aligned with the flow direction of the second gas stream at the mixing point (20) thereby introducing the first gas stream into the second gas stream in a low shear manner.
    Type: Application
    Filed: November 12, 2008
    Publication date: December 9, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison, Matthias Schaefer
  • Publication number: 20100280261
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors are germanium doped and comprise a precursor alumina blend. It has now surprisingly been discovered that inclusion of germanium, alone or in combination with such a blend, in porous body precursors can provide control over, or improvements to, surface morphology, physical properties, and/or surface chemistry of shaped porous bodies based thereupon. Surprisingly and advantageously, heat treating the shaped porous bodies can result in additional morphological changes so that additional fine tuning of the shaped porous bodies is possible in subsequent steps.
    Type: Application
    Filed: April 10, 2010
    Publication date: November 4, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Kevin E. Howard, Cathy L. Tway, Peter C. Lebaron, Jamie L. Lovelace, Hirokazu Shibata
  • Publication number: 20100267972
    Abstract: An improved method of operating an alkylene oxide production process to achieve and maintain a desired alkylene oxide production parameter is shown and described. The method comprises adjusting one of an overall catalyst chloriding effectiveness parameter or reaction temperature to obtain the desired alkylene oxide production parameter.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Liping Zhang, Albert C. Liu, Michael Habenschuss
  • Publication number: 20100267974
    Abstract: A simplified method of operating an alkylene oxide production process that utilizes a high efficiency silver catalyst is shown and described. The method accounts for declining catalyst activity that occurs as the catalyst ages by making alternating changes to the reaction temperature and an overall chloriding effectiveness parameter.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Liping Zhang, Hwaili Soo, William H. Henstock
  • Publication number: 20100267969
    Abstract: The present invention provides rhenium-promoted epoxidation catalysts based upon shaped porous bodies comprising a minimized percentage of their total pore volume being present in pores having diameters of less than one micron, and a surface area of at least about 1.0 m2/g. Processes of making the catalysts and using them in epoxidation processes are also provided.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Albert C. Liu, Hwaili Soo
  • Publication number: 20100263535
    Abstract: A method of mixing an oxygen gas with a hydrocarbon-containing gas includes the steps of wet scrubbing the oxygen gas in a wet scrubber, supplying oxygen gas from the wet scrubber to a gas mixer and mixing the oxygen gas with the hydrocarbon-containing gas in the gas mixer. Wet scrubbers for use in the method may take various forms, including packed-tower, bubble cap, and sparger-type wet scrubbers. The removal of the particulate matter reduces the risk of ignition of the hydrocarbon-containing gas in the gas mixer. The use of a wet scrubber in the oxygen supply line overcomes many problems currently faced with screen and filters, as per current practice.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20100267973
    Abstract: A method for enhancing the efficiency of a rhenium-promoted epoxidation catalyst is provided. Advantageously, the method may be carried out in situ, i.e., within the epoxidation process, and in fact, may be carried out during production of the desired epoxide. As such, a method for the epoxidation of alkylenes incorporating the efficiency-enhancing method is also provided, as is a method for using the alkylene oxides so produced for the production of 1,2-diols, 1,2-carbonates, 1,2-diol ethers, or alkanolamines.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Albert C. Liu, Liping Zhang
  • Publication number: 20100204496
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen gas in a gas mixer in the presence of coarse water droplet environment, e.g., a ‘rainy’ or ‘driving rainstorm’ environment in which the water droplets generally have a size greater than 200 microns SMD. The water droplets surround and contact entrained particles in either the oxygen gas stream or the hydrocarbon-containing gas stream. The water acts to suppress, prevent and quench ignition of the hydrocarbon gas in the mixer which would otherwise be caused by energetic collisions between such particles and structures within the gas mixer. In one configuration the gas mixer includes water pipes having coarse water droplet-producing nozzles at the peripheral end thereof concentrically located within oxygen supply pipes. Additionally, nozzles introduce coarse water droplets into a pipe carrying the hydrocarbon gas and forming a mixing chamber for the hydrocarbon and oxygen gases.
    Type: Application
    Filed: November 7, 2008
    Publication date: August 12, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20100204495
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen-containing gas in a gas mixer in the presence of a water mist. The water mist surrounds and contacts entrained particles in either the oxygen-containing gas stream or the hydrocarbon-containing gas stream. The water acts to suppress and prevent ignition of the hydrocarbon gas in the mixer by serving as a sink for heat created by energetic collisions between such particles and structures within the gas mixer. The water mist also acts to quench ignition caused by such collisions. The water mist can be introduced into the gas mixer in a number of different configurations, including via nozzles injecting a mist into a hydrocarbon gas manifold or an oxygen gas manifold, nozzles placed within the gas mixer adjacent to ends of the oxygen supply pipes, and nozzles placed coaxially within the oxygen supply pipes in the gas mixer.
    Type: Application
    Filed: November 7, 2008
    Publication date: August 12, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison