Patents Assigned to Dowa Electronics Materials Co., Ltd.
  • Patent number: 8617781
    Abstract: The carrier core particles 11 for electrophotographic developer contain lithium as a core composition. When the carrier core particles 11 are immersed in pure water at a weight ratio of 1 part core particles 11 to 10 parts pure water and shaken, the amount of lithium that leaches out to the pure water is 0.10 ppm or lower.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: December 31, 2013
    Assignees: Dowa Electronics Materials Co., Ltd., Dowa IP Creation Co., Ltd.
    Inventor: Takeshi Kawauchi
  • Publication number: 20130344431
    Abstract: The carrier core particles for electrophotographic developer have a volume size distribution with a median particle size ranging from 30 ?m to 40 ?m, the ratio of the carrier core particles having a diameter of 22 ?m or lower in the volume size distribution is from 1.0% to 2.0%, the ratio of the carrier core particles having a diameter of 22 ?m or lower in a number size distribution is 10% or lower, and the magnetization of the carrier core particles in an external magnetic field of 1000 Oe is from 50 emu/g to 75 emu/g.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 26, 2013
    Applicants: DOWA IP CREATION CO., LTD., DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Tomohide Iida, Tomoya Yamada, Takashi Fujiwara
  • Publication number: 20130323529
    Abstract: There is provided a bonding material capable of forming a bonding body under an inert gas atmosphere such as a nitrogen atmosphere, and capable of exhibiting a bonding strength that endures a practical use even if not a heat treatment is applied thereto at a high temperature, which is the bonding material containing silver nanoparticles coated with a fatty acid having a carbon number of 8 or less and having an average primary particle size of 1 nm or more and 200 nm or less, and silver particles having an average particle size of 0.5 ?m or more and 10 ?m or less, and an organic material having two or more carboxyl groups.
    Type: Application
    Filed: May 13, 2011
    Publication date: December 5, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Satoru Kurita, Keiichi Endoh, Yu Saito, Yutaka Hisaeda, Toshihiko Ueyama
  • Patent number: 8592123
    Abstract: To provide a carrier for electrophotographic developer, capable of realizing a high image quality and full colorization and reducing carrier scattering, and a manufacturing method of the same, and an electrophotographic developer containing the carrier. A carrier core material for electrophotographic developer, with a general formula expressed by MgxMn(1-x)FeyO4 (where 0<x<1, and 1.6?y?2.4), wherein a half-value width B of a peak having a maximum intensity in a powder XRD pattern satisfies B?0.180 (degree), is manufactured and from this carrier core material for electrophotographic developer, the carrier for electrophotographic developer and the electrophotographic developer are manufactured.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: November 26, 2013
    Assignees: Dowa Electronics Materials Co., Ltd., Dowa IP Creation Co., Ltd.
    Inventors: Tomoya Yamada, Takashi Fujiwara, Ryusuke Nakao, Yukihiro Matuda, Tomokazu Mouri
  • Patent number: 8581106
    Abstract: A submount with an electrode layer having excellent wettability in soldering and method of manufacturing the same are disclosed. A submount (1) for having a semiconductor device mounted thereon comprises a submount substrate (2), a substrate protective layer (3) formed on a surface of the submount substrate (2), an electrode layer (4) formed on the substrate protective layer (3) and a solder layer (5) formed on the electrode layer (3) wherein the electrode layer (4) is made having an average surface roughness of less than 1 ?m. The reduced average surface roughness of the electrode layer (4) improves wettability of the solder layer (5), allowing the solder layer (5) and a semiconductor device to be firmly bonded together without any flux therebetween. A submount (1) is thus obtained which with the semiconductor device mounted thereon is reduced in heat resistance, reducing its temperature rise and improving its performance and service life.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 12, 2013
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshikazu Oshika, Masayuki Nakano
  • Patent number: 8580381
    Abstract: An oxygen absorber for blending in a resin, comprising a mixed powder containing an iron powder, a metal halide and an alkaline substance, and having a half-peak width on a plane (110) of 0.20°/2? (Co—K?) or less as measured by a powder X-ray diffraction method, a specific surface area of 0.5 m2/g or more, and an average particle size of 1 to 40 ?m. The oxygen absorber effectively suppresses the generation of hydrogen, features excellent safety, exhibits excellent oxygen-absorbing capability and offers an advantage of high productivity due to the suppressed occurrence of coarse particles in the step of producing the oxygen absorber.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 12, 2013
    Assignees: Toyo Seikan Kaisha, Ltd, Dowa Electronics Materials Co., Ltd, Dowa IP Creation Co., Ltd
    Inventors: Youichi Ishizaki, Keiji Fukue, Kazuhiro Seno
  • Publication number: 20130292641
    Abstract: To provide a semiconductor device including a functional laminate having flatness and crystallinity improved by effectively passing on the crystallinity and flatness improved in a buffer to the functional laminate, and to provide a method of producing the semiconductor device; in the semiconductor device including the buffer and the functional laminate having a plurality of nitride semiconductor layers, the functional laminate includes a first n-type or i-type AlxGa1-xN layer (0?x<1) on the buffer side, and an AlzGa1-zN adjustment layer containing p-type impurity, which has an approximately equal Al composition to the first AlxGa1-xN layer (x?0.05?z?x+0.05, 0?z<1) is provided between the buffer and the functional laminate.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 7, 2013
    Applicant: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshikazu OOSHIKA, Tetsuya MATSUURA
  • Publication number: 20130285074
    Abstract: A luminescent device and a manufacturing method for the luminescent device and a semiconductor device which are free from occurrence of cracks in a compound semiconductor layer due to the internal stress in the compound semiconductor layer at the time of chemical lift-off. The luminescent device manufacturing method includes forming a device region on part of an epitaxial substrate through a lift-off layer; forming a sacrificing portion, being not removed in a chemical lift-off step, around device region on epitaxial substrate; covering epitaxial substrate and semiconductor layer and forming a covering layer such that level of surface thereof in the region away from device region is lower than luminescent layer surface; removing covering layer on semiconductor layer, and that on sacrificing portion surface; forming a reflection layer on covering layer surface and semiconductor layer surface; and forming a supporting substrate by providing plating on reflection layer.
    Type: Application
    Filed: January 11, 2012
    Publication date: October 31, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Yoshitaka Kakowaki, Tatsunori Toyota
  • Publication number: 20130270488
    Abstract: It is important that the metal particles used in a conductive paste used for wiring have the characteristic of being easily dispersed in a polar solvent in combination with another material such as a resin used in a paste. Provided is a metal particle powder which exhibits a pH value of 6 or less when 0.5 g of the metal particles to be evaluated are added to 100 mL of a potassium hydroxide solution with a pH of 11, and then an aqueous nitric acid solution in an amount in which pH becomes 5 by adding 0.10 mol/L nitric acid to 100 mL of a potassium hydroxide solution and 10 mL of ethyl alcohol (blank solution) with a pH of 11 is added.
    Type: Application
    Filed: January 18, 2012
    Publication date: October 17, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Toshihiko Ueyama, Shinya Sasaki
  • Publication number: 20130234078
    Abstract: The method for manufacturing a silver particle-containing composition according to the invention is directed to a method for manufacturing a silver particle-containing composition coated with a fatty acid and includes a step (A) of preparing silver particles coated with a first fatty acid (a) with 3 to 7 carbon atoms, a second fatty acid (b) with 2 to 20 carbon atoms, and a solvent in which the first and second fatty acids can disperse, respectively, a step (B) of adding the silver particles coated with the first fatty acid (a) and the second fatty acid (b) into the solvent, and a step (C) of substituting the second fatty acid (b) for the first fatty acid (a) coating the silver particles after the addition step.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 12, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD
    Inventors: Yu Saito, Shinya Sasaki
  • Patent number: 8524122
    Abstract: A production method capable of producing ITO particles without using a solvent with a high boiling point as a solvent used in the producing step by a simple treatment method without through a heating process in an atmosphere which disadvantageously causes sintering among the ITO particles to coarsen the ITO particles. An ITO powder suitable for a coating material for a transparent electroconductive material, being produced by a first step of dissolving salt containing indium and salt containing tin into an organic solvent, then adding to this organic solvent, an organic solvent containing a basic precipitant, to thereby manufacture a mixture of a precursor containing indium and tin, and the organic solvent; and a second step of applying heat treatment to the mixture of the precursor containing indium and tin, and the organic solvent in a pressurizing vessel at 200° C. or more and 300° C. or less, to generate ITO particles.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 3, 2013
    Assignees: Tohoku University, Dowa Electronics Materials Co., Ltd.
    Inventors: Atsushi Muramatsu, Kiyoshi Kanie, Kazuhisa Saito, Koji Tanoue, Akira Nagatomi
  • Patent number: 8516692
    Abstract: A solder layer, a substrate for device joining utilizing the same and a method of manufacturing the substrate are provided whereby the device joined remains thermally unaffected, an initial bonding strength in solder joint is enhanced and the device can be soldered reliably. The solder layer formed on a base substrate (2) consists of a plurality of layers (5a) of a solder free from lead, which are different in its phase from one another. They are constituted by a layer of a phase that is completely melted, and a layer of a phase that is not completely melted at a temperature not less than a eutectic temperature of the solder. The solder layer (5) can be applied to a device joining substrate (1) comprising an electrode layer (4) formed on the base substrate (2) and the solder layer (5) formed on the electrode layer.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: August 27, 2013
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshikazu Oshika, Munenori Hashimoto, Masayuki Nakano
  • Patent number: 8512602
    Abstract: ITO particles are provided, which are small in variations of particle diameters and used for an ITO coating material capable of forming a transparent conductive film having high transparency and low haze value. Also, ITO coating material is provided, containing such ITO particles, and a transparent conductive film containing such ITO particles. Further, ITO powders are provided, wherein 90% or more of ITO particles constituting the ITO powders have a primary particle diameter of 20 nm or less.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 20, 2013
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Akira Nagatomi, Koji Tanoue
  • Publication number: 20130193471
    Abstract: A III nitride semiconductor light emitting device with improved light emission efficiency achieved without significantly increasing forward voltage by achieving both good ohmic contact between an electrode and a semiconductor layer, and sufficient functionality of a reflective electrode layer, and a method for manufacturing the same. The III nitride semiconductor light emitting device has a III nitride semiconductor laminate including an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer; an n-side electrode, a p-side electrode; and a composite layer having a reflective electrode portion and a contact portion made of AlxGa1-xN (0?x?0.05) on a second surface of the III nitride semiconductor laminate. The second surface is opposite to a first surface on the light extraction side.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 1, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Tatsunori Toyota, Tomohiko Shibata
  • Publication number: 20130189614
    Abstract: A carrier core particle for an electrophotographic developer including a core composition expressed by a general formula: (MnxMgyCaz) FeWO4+V (x+y+z+w=3, ?0.003<v) as a main ingredient, wherein 0.05?y?0.35 and 0.005?z?0.024.
    Type: Application
    Filed: July 26, 2011
    Publication date: July 25, 2013
    Applicants: DOWA IP CREATION CO., LTD., DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Takeshi Kawauchi, Yukihiro Matsuda
  • Publication number: 20130181188
    Abstract: A III nitride epitaxial substrate which makes it possible to obtain a deep ultraviolet light emitting device with improved light output power is provided. A III nitride epitaxial substrate 10 includes a substrate 12, an AlN buffer layer 14, a first superlattice laminate 16, a second superlattice laminate 18 and a III nitride laminate 20 in this order. The III nitride laminate 20 includes an active layer 24 including an Al?Ga1-?N (0.03??) layer. The first superlattice laminate 16 includes AlaGa1-aN layers 16A and AlbGa1-bN (0.9<b?1) layers 16B which are alternately stacked, where ?<a and a<b hold. The second superlattice laminate 18 includes repeated layer sets each having an AlxGa1-xN layer 18A, an AlyGa1-yN layer 18B, and an AlzGa1-zN (0.9<z?1) layer 18C, where ?<x and x<y<z hold.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventor: DOWA ELECTRONICS MATERIALS CO., LTD.
  • Patent number: 8486310
    Abstract: A composition containing fine silver particles which have a uniform particle size, can form a fine drawing pattern, and have a small environmental impact, a method for producing that composition, a method for producing fine silver particles, and a paste having fine silver particles are provided. The fine silver particles are produced by carrying out a fluid preparation step of preparing a reduction fluid, a silver reaction step, and a filtration/washing step. The reaction step is carried out by adding an aqueous silver nitrate fluid to a reduction fluid whose temperature has been increased to a range between 40 and 800 ° C. The aqueous silver nitrate fluid is added at a stretch. The composition containing fine silver particles is produced by dispersing the composition containing the fine silver particles in a polar fluid.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 16, 2013
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yutaka Hisaeda, Toshihiko Ueyama
  • Publication number: 20130177471
    Abstract: There are provided a copper powder for conductive paste, which comprises monodisperse and spherical fine copper particles having a sharp particle size distribution and containing no coarse particles and which can form a thinner electrode film while avoiding a bad influence on electric characteristics thereof, and a method for stably producing such a copper powder for conductive paste. After copper is complexed by adding a complexing agent to an aqueous solution containing copper while blowing air into the solution, the blowing of air is stopped, and then, a reducing agent is added to the solution to deposit copper particles by reduction.
    Type: Application
    Filed: September 12, 2011
    Publication date: July 11, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Yuki Kaneshiro, Shinichi Suenaga, Hidefumi Fujita, Minoru Kishida
  • Patent number: 8472208
    Abstract: A submount with an electrode layer having excellent wettability in soldering and method of manufacturing the same are disclosed. A submount (1) for having a semiconductor device mounted thereon comprises a submount substrate (2), a substrate protective layer (3) formed on a surface of the submount substrate (2), an electrode layer (4) formed on the substrate protective layer (3) and a solder layer (5) formed on the electrode layer (3) wherein the electrode layer (4) is made having an average surface roughness of less than 1 ?m. The reduced average surface roughness of the electrode layer (4) improves wettability of the solder layer (5), allowing the solder layer (5) and a semiconductor device to be firmly bonded together without any flux therebetween. A submount (1) is thus obtained which with the semiconductor device mounted thereon is reduced in heat resistance, reducing its temperature rise and improving its performance and service life.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: June 25, 2013
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshikazu Oshika, Masayuki Nakano
  • Patent number: 8469760
    Abstract: A light emitting device 10 includes: a lead frame 12a serving as a mounting portion having a cup 13; a light emitting element 14, mounted on the bottom face 13a of the cup, for emitting light having a predetermined peak wavelength; a layer of large phosphor particles 16, adsorbed and formed on the light emitting element, for absorbing light emitted from the light emitting element and for emitting light having a longer peak wavelength than that of the light emitted from the light emitting element; small phosphor particles 18, which have a smaller particle diameter than that of the large phosphor particles, for absorbing at least one of light emitted from the large phosphor particles and light emitted from the light emitting element and for emitting light having a longer peak wavelength than that of the at least one of the light emitted from the large phosphor particles and the light emitted from the light emitting element; and a sealing member 20, in which the small phosphor particles are dispersed, for sealin
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 25, 2013
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Tsukasa Maruyama, Masahiro Gotoh, Tetsuya Ikuta