Patents Assigned to Dresser-Rand Company
  • Patent number: 11492909
    Abstract: A platform seal and damper assembly for turbomachinery (100), such as fluidized catalytic cracking (FCC) expanders or gas turbine engines; and methodologies for forming such assembly are provided. An axially-extending groove (160) is arranged on a side (162) of a respective platform. Groove (160) is defined by a radially-outward surface (168) at an underside of the platform and a surface (170) extending with a tangential component (T) toward radially-outward surface (168). A seal and damper member (152) is disposed in groove (160), where the body of seal and damper member has adjoining surfaces (190, 188) configured to respectively engage, in response to a camming action, with the surfaces (168, 170) that define the axially-extending groove. The camming action being effective to produce an interference fit of the seal and damper member (152) with the side of the respective platform (162) and an opposed side (163) of an adjacent platform.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: November 8, 2022
    Assignee: DRESSER-RAND COMPANY
    Inventor: Nicholas Vachon
  • Patent number: 11401861
    Abstract: A pumped heat energy storage (PHES) system, involving an annular ducting arrangement is provided. Disclosed embodiments are believed to resolve the issue of containing a high temperature working fluid at elevated pressure by appropriately compartmentalizing by way of the annular ducting arrangement the functions of temperature management and pressure containment in a cost-effective and reliable manner.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 2, 2022
    Assignee: Dresser-Rand Company
    Inventor: Jason M. Kerth
  • Patent number: 11404803
    Abstract: An electrical connector for making electrical contact with at least one lead of an electronic device. The connector includes a mounting flange portion and a connector housing portion. The connector also includes at least one conductor having a pin end and a terminal end, wherein the terminal end includes a lead opening that receives the lead and a fastener hole oriented substantially transverse to the lead opening. A fastening element is used to engage the fastener hole and contacts the lead to form electrical contact between the conductor and the lead. The connector further includes a conductor carrier that extends through the connector housing and mounting flange. The conductor carrier includes a base portion and at least one extended portion that extends from the base portion to form a staggered arrangement. The base and extended portions each include a plurality of channels wherein each channel includes a conductor.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: August 2, 2022
    Assignee: Dresser-Rand Company
    Inventors: Justin Malpiedi, Christopher Scott, Steven Rockwood
  • Patent number: 11391279
    Abstract: A compressor valve assembly is disclosed. The valve assembly includes a guide having a cylindrical cup portion and a cylindrical stem portion that extends axially in a socket where the guide can be removably affixed to a stop plate. The disclosed valve assembly is conducive to user-friendly serviceability while realizing an increased flow area with operational capability at relatively higher pressures and practically no susceptibility to bending stresses.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: July 19, 2022
    Assignee: DRESSER-RAND COMPANY
    Inventors: Joel T. Sanford, Edward Frazzini
  • Patent number: 11384753
    Abstract: An unloader valve includes a seat including a plurality of inlet apertures spaced apart from one another and extending through the seat along one of a plurality of parallel inlet axes. A manifold plate is fixedly connected to the seat and includes a plurality of outlet apertures, each spaced apart from one another and extending through the manifold plate along one of a plurality of parallel outlet axes. The unloader valve also includes a plurality of plug holes, a control chamber formed in the manifold plate, and a control space fully defined by the manifold plate and arranged to fluidly connect the control chamber and each of the plug holes to one another.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: July 12, 2022
    Assignee: DRESSER-RAND COMPANY
    Inventor: Joel T. Sanford
  • Patent number: 11278860
    Abstract: Chemical reactor (10) and method for cracking are disclosed. A process fluid is accelerated with axial impulse impellers (40A, 40B) to a velocity greater than Mach 1 and, in turn, generating a shock wave (90) in the process fluid by decelerating it in a static diffuser (70) having diverging diffuser passages (72). Temperature increase of the process fluid downstream of the shockwave cracks or splits molecules, such as hydrocarbons entrained in the process fluid, in a single pass, through a unidirectional flow path (F), within a single stage, without recirculating the process fluid for another pass through the same stage. In some embodiments, a system involving at least two turbomachine chemical reactors (110) may provide multiple successive stages of one or more axial impulse impellers (40A, 40B), paired with a diverging passage, static diffuser (70).
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: March 22, 2022
    Assignee: DRESSER-RAND COMPANY
    Inventors: Silvano R. Saretto, Paul Morrison Brown, Kirk Ryan Lupkes, David Andrew Taylor
  • Patent number: 11273423
    Abstract: A turbomachine type chemical reactor for processing a process fluid is presented. The turbomachine type chemical reactor includes at least one impeller section and a stationary diffuser section arranged downstream. The impeller section accelerates the process fluid to a supersonic flow. A shock wave is generated in the stationary diffuser section that instantaneously increases static temperature of the process fluid downstream the shock wave for processing the process fluid. which allows thermally cracking a chemical compound, such as hydrocarbon, in the process fluid. Static pressure of the process fluid is simultaneously increased across the shock wave. The turbomachine type chemical reactor significantly reduces residence time of the process fluid in the chemical reactor and improves efficiency of the chemical reactor.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: March 15, 2022
    Assignee: DRESSER-RAND COMPANY
    Inventors: Silvano R. Saretto, Kirk Ryan Lupkes
  • Patent number: 11255262
    Abstract: A hybrid compressed air energy storage system is provided. A heat exchanger 114 extracts thermal energy from a compressed air to generate a cooled compressed air stored in an air storage reservoir 120, e.g., a cavern. A heat exchanger 124 transfers thermal energy generated by a carbon-neutral thermal energy source 130 to cooled compressed air conveyed from reservoir 120 to generate a heated compressed air. An expander 140 is solely responsive to the heated compressed air by heat exchanger 124 to produce power and generate an expanded air. Expander 140 is effective to reduce a temperature of the expanded air by expander 140, and thus a transfer of thermal energy from an expanded exhaust gas received by a recuperator 146 (used to heat the expanded air by the first expander) is effective for reducing waste of thermal energy in exhaust gas cooled by recuperator 146.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: February 22, 2022
    Assignee: DRESSER-RAND COMPANY
    Inventor: Joseph T. Williams
  • Patent number: 11199202
    Abstract: An acoustic attenuator for a turbomachine and methodology for additively manufacturing the acoustic attenuator are provided. The acoustic attenuator includes an annular body (202) having an outer surface (204) and an inner surface (206). The inner surface of the annular body may define a bore (208) extending along a longitudinal axis (209) of the acoustic attenuator between a first end and a second end of the acoustic attenuator. The annular body may be formed by a plurality of axially-successive cross-sectional layers (e.g., 632, 634, 636) unitized between the first end and the second end of the acoustic attenuator. The plurality of axially-successive cross-sectional layers may be transversely disposed relative to the longitudinal axis of the acoustic attenuator. At least some axially-successive cross-sectional layers of the plurality of axially-successive cross-sectional layers (e.g., 632, 634, 636) defining a pocket (214) disposed between the outer surface and the inner surface of the annular body.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: December 14, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventors: Byron L. Mohr, Christopher Guerra, Scott MacWilliams
  • Patent number: 11125105
    Abstract: Systems and methods for protecting a turbomachine may include a trip throttle valve having a throttle valve assembly and a trip valve assembly. The trip valve assembly may include a plurality of trip valves fluidly coupled to a hydraulic cylinder of the throttle valve assembly via a first flow path and a second flow path in parallel with one another. The trip valve assembly may also include a plurality of isolation valves fluidly coupled to the hydraulic cylinder via the first flow path and the second flow path. The plurality of isolation valves may be configured to selectively prevent fluid communication between the plurality of trip valves and the hydraulic cylinder to allow testing of one or more of the plurality of trip valves during operation of the turbomachine.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: September 21, 2021
    Assignees: DRESSER-RAND COMPANY, REXA, INC.
    Inventors: Shannon Nimchan, John Limmer, Pedro Lopez, Ken Enos
  • Patent number: 11123702
    Abstract: A turbomachine type chemical reactor for processing a process fluid is presented. The turbomachine type chemical reactor includes at least one impeller section and a stationary diffuser section arranged downstream. The impeller section accelerates the process fluid to a supersonic flow. A shock wave is generated in the stationary diffuser section that instantaneously increases static temperature of the process fluid downstream the shock wave for processing the process fluid. Static pressure of the process fluid is simultaneously increased across the shock wave. The turbomachine type chemical reactor significantly reduces residence time of the process fluid in the chemical reactor and improves efficiency of the chemical reactor.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: September 21, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventors: Silvano R. Saretto, Kirk Ryan Lupkes
  • Patent number: 11118594
    Abstract: A seal apparatus for a casing of a turbomachine. The seal apparatus may include an annular body having first and second annular body portions and an appendage. The second annular body portion may extend axially from the first annular body portion and may have an outer annular surface radially offset from an outer annular surface of the first annular body portion. The appendage may extend axially from the first annular body portion and may have an outer annular surface and an inner annular surface. The inner annular surface of the appendage and the outer annular surface of the second annular body portion may define an annular cavity therebetween, and at least a portion of the appendage may be configured to be displaced radially outward in order to maintain contact with first and second inner cylindrical surfaces of the casing during radial expansion of the casing.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: September 14, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventor: Daniel J. Griffin
  • Patent number: 11059018
    Abstract: Chemical reactors (10) and methods crack hydrocarbons in process fluids by accelerating the process fluid to a velocity greater than Mach 1 with an axial impulse impeller (40) and generating a shock wave (90) in the process fluid by decelerating it in a static diffuser (70) having diverging diffuser passages (72). Temperature increase of the process fluid downstream of the shockwave cracks the entrained hydrocarbons in a single pass, through a unidirectional flow path (F), within a single stage, without recirculating the process fluid for another pass through the same stage. In some embodiments, the turbomachine chemical reactor (110) has multiple successive stages of one or more axial impulse impellers (40A, 40B), paired with a diverging passage, static diffuser (70). Successive stages crack additional hydrocarbons by successively raising temperature of the flowing process fluid.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: July 13, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventors: Silvano R. Saretto, Paul Morrison Brown, Kirk Ryan Lupkes, David Andrew Taylor
  • Patent number: 11015591
    Abstract: An inlet valve system for a cylinder chamber of a reciprocating compressor and a method for unloading the inlet valve system are provided. The inlet valve system may include an unloader, a valve assembly including a cylindrical valve body circumferentially disposed about a central axis of the inlet valve system, and a control valve actuator including a control valve body circumferentially disposed about the central axis of the inlet valve system. A control valve passage of the control valve body may extend along the central axis of the inlet valve system, a control valve element may be disposed in the control valve passage, and a control pressure source may be fluidly coupled to the control valve passage.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: May 25, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventor: Joel T. Sanford
  • Patent number: 10894236
    Abstract: A fluid distribution system (208) is provided for a reactor vessel (200) defining a reaction chamber (202). The fluid distribution system (208) may include a radial distribution component (224) positionable within the reaction chamber (202) and adjacent a vessel inlet (212) at an end portion of the reactor vessel (200). The radial distribution component (224) may include one or more annular distribution conduits (230) configured to receive a fluid mixture provided to the reactor vessel (200). The fluid distribution system (208) may also include an axial distribution component (226) positionable within the reaction chamber (202) to extend from the radial distribution component (224) along a longitudinal axis of the reactor vessel (200).
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: January 19, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventors: William C. Maier, Scott David Wisler
  • Patent number: 10844446
    Abstract: A method is provided for fabricating iron castings for metallic components. The method for fabricating the iron castings may include forming a molten solution by melting carbon and iron and combining carbon nanomaterials with the molten solution. A first portion of the carbon nanomaterials combined with the molten solution may be dispersed therein. The method may also include cooling the molten solution to solidify at least a portion of the carbon thereof to fabricate the iron castings. The first portion of the carbon nanomaterials may be dispersed in the iron castings.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 24, 2020
    Assignee: DRESSER-RAND COMPANY
    Inventor: Kevin Pickrell
  • Patent number: 10844791
    Abstract: A gas turbine may include a rotatable shaft, a compressor disposed about the rotatable shaft and configured to output compressed air, and a combustor disposed about the rotatable shaft. The combustor may be configured to receive the compressed air and output high temperature compressed gas. The gas turbine may further include a power turbine disposed about the rotatable shaft and configured to receive the high temperature compressed gas, and a first liner defining a plurality of holes and disposed around the combustor. The power turbine may be configured to expand the high temperature compressed gas and rotate the rotatable shaft. The first liner may have a first end and a longitudinally opposite second end. The first end may be coupled to an inner surface of the casing at or adjacent an upstream end of the combustor and the second end may be substantially free from any connection with the casing.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: November 24, 2020
    Assignee: DRESSER-RAND COMPANY
    Inventors: Andrew J. Olsen, Ivar Austrem, Serkan Yildirim, Zheji Liu
  • Patent number: 10794166
    Abstract: A hydraulic fracturing system that includes a fixed-speed gas turbine assembly having a gas generator and power turbine, both mounted to a semi-trailer. The system further includes a hydraulic pump mounted to the semi-trailer and connected to an output shaft of the power turbine and a hydraulically-driven fracturing fluid pump mounted to the semi-trailer and being in fluid communication with the hydraulic pump, the hydraulic pump supplying fluid pressure to the hydraulically-driven fracturing fluid pump. The system is configured such that the hydraulically-driven fracturing fluid pump receives fracturing fluid containing chemicals and proppants and pressurizes the fracturing fluid to a pressure sufficient for injection into a wellbore to support a hydraulic fracturing operation.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: October 6, 2020
    Assignee: DRESSER-RAND COMPANY
    Inventors: Udo Reckels, Harold Jones
  • Patent number: 10781806
    Abstract: A compressor valve may include a guard and a seat affixed thereto. The seat may have an inlet surface and an outlet surface opposite the inlet surface. A reconditioning limit indicator may be defined by or adjacent the outlet surface. The reconditioning limit indicator may be indicative of a maximum amount of material of the seat removable from the outlet surface during reconditioning of the seat. The reconditioning limit indicator may be a groove defined by the outer cylindrical surface of the seat, a portion of the outer cylindrical surface of the seat adjacent the outlet surface and having an outer diameter smaller than the outer diameter of the seat, or a predetermined shape of a predetermined depth machined on the outlet surface of the seat.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: September 22, 2020
    Assignee: DRESSER-RAND COMPANY
    Inventors: Glenn D. Hatch, Joel T. Sanford, Jeffrey Pennypacker
  • Patent number: D924136
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: July 6, 2021
    Assignee: DRESSER-RAND COMPANY
    Inventors: Atif Muhammad Aliuddin, Nicholas Vachon, Graham D. Sherlock, Timothy R. Griffin