Abstract: Methods for caring for a patient are disclosed. In some embodiments, the methods include measuring a first autonomic nervous system condition of the patient, calculating a first autonomic dysfunction based on the measured first autonomic nervous system condition, and calculating a first sympathovagal balance based on the first measured autonomic nervous system condition. The method also includes treating the patient, measuring a second autonomic nervous system condition of the patient, calculating a second sympathovagal balance based on the second measured autonomic nervous system condition, and comparing the second sympathovagal balance with the first sympathovagal balance. The method also includes calculating a second autonomic dysfunction based on the measured second autonomic nervous system condition, and comparing the second autonomic dysfunction with the first autonomic dysfunction.
Abstract: Embodiments of the present invention provide a method, a system, and a computer code for analyzing the state of a first system (e.g., the autonomic system) from a time-varying signal representing a chaotic series of time intervals between quasi-periodical events produced by a second system (e.g., the cardiac system) governed by the first system. In one embodiment, the method includes extracting envelope information from the time-varying signal, constructing a phase space for the time-varying signal, extracting information on the relative positions of points corresponding to the time-varying signal in the phase space, combining the envelope and the position information and, based on this combination, providing information on the state of the first system.
Type:
Grant
Filed:
October 7, 2004
Date of Patent:
August 15, 2006
Assignee:
Dyansys, Inc.
Inventors:
Melvyn Jérémie Lafitte, Orin Sauvageot, Marion Fèvre-Genoulaz, Srini Nageshwar
Abstract: Embodiments of the present invention provide a method, a system, and a computer code for analyzing the state of a first system (e.g., the autonomic system) from a time-varying signal representing a chaotic series of time intervals between quasi-periodical events produced by a second system (e.g., the cardiac system) governed by the first system. In one embodiment, the method comprises extracting envelope information from the time-varying signal, constructing a phase space for the time-varying signal, extracting information on the relative positions of points corresponding to the time-varying signal in the phase space, combining the envelope and the position information and, based on this combination, providing information on the state of the first system.
Type:
Application
Filed:
October 7, 2004
Publication date:
April 7, 2005
Applicant:
Dyansys, Inc.
Inventors:
Melvyn Lafitte, Orin Sauvageot, Marion Fevre-Genoulaz, Srini Nageshwar