Abstract: A porous metal coated implant is produced by diffusion bonding metal powder particles, preferably spherical or flattened spherical metal powder particles of commercially pure titanium grade, in the form of an insert or pad to a substrate, preferably commercially pure titanium or Ti 6Al-4V ELI, a prosthesis, below the beta-transus of the substrate material, under pressure and temperature in a non-reactive atmosphere, such as vacuum. The use of pressure permits bonding temperatures to be reduced to approximately 50% of the melting point of the substrate material. A clamping mechanism for applying pressure to the components is also disclosed.
Abstract: A porous metal coated implant is produced by diffusion bonding metal powder particles, preferably spherical or flattened spherical metal powder particles of commercially pure titanium grade, in the form of an insert or pad to a substrate, preferably commercially pure titanium or Ti 6Al-4V ELI, a prosthesis below the beta-transus of the substrate material, under pressure and temperature in a non-reactive atmosphere, such as vacuum. The use of pressure permits bonding temperatures to be reduced to approximately 50% of the melting point of the substrate material. A clamping mechanism for applying pressure to the components is also disclosed.
Abstract: A process and mold for applying a porous metal coating to a metal substrate or a portion thereof, especially for forming a medical prosthesis. The substrate to be coated is cleaned, then positioned in a rigid mold of ceramic or metal material having a defined mold cavity. The space between the mold cavity surface and the substrate is filled with a metal powder and the mold, powder and substrate assembly is pre-sintered. The pre-sinter conditions are selected such that the powder lightly sinters together and adheres to the substrate, but not to the mold cavity surface. After removal of the mold, the coated substrate is further sintered to obtain the proper desired bond strength and pore volume. Sintering is carried out in a protective atmosphere.