Abstract: A method of producing a superalloy gun barrel includes providing a tubular workpiece made of a cobalt-based superalloy material, the workpiece having at least about 30% by weight of fcc phase and having an inner diameter and an outer diameter. The method further includes placing the workpiece on a mandrel such that the inner diameter is adjacent to the mandrel and compressing the outer diameter of the workpiece at a temperature below a recrystallization temperature of the workpiece using a combination of axial and radial forces so that the mandrel contacts the inner diameter and imparts a compressive hoop stress to the inner diameter of the workpiece.
Abstract: A method of producing a seamless, tubular product includes centrifugally casting a corrosion resistant alloy into a tubular workpiece having an inner diameter and an outer diameter. The method then removes material from the inner diameter of the workpiece and subjects the workpiece to at least about a 25% wall reduction at a temperature below a recrystallization temperature of the workpiece using a metal forming process. The metal forming process includes radial forging, rolling, pilgering, and/or flowforming.
Abstract: A method of producing a superalloy gun barrel includes providing a tubular workpiece made of a cobalt-based superalloy material, the workpiece having at least about 30% by weight of fcc phase and having an inner diameter and an outer diameter. The method further includes placing the workpiece on a mandrel such that the inner diameter is adjacent to the mandrel and compressing the outer diameter of the workpiece at a temperature below a recrystallization temperature of the workpiece using a combination of axial and radial forces so that the mandrel contacts the inner diameter and imparts a compressive hoop stress to the inner diameter of the workpiece.
Abstract: A method of producing a cobalt-based tubular product includes forming a cobalt or cobalt alloy tubular workpiece having at least about 30% by weight of fcc phase and subjecting the workpiece to at least about a 20% wall reduction at a temperature below a recrystallization temperature of the workpiece using a metal forming process. The metal forming process may include radial forging, rotary swaging, pilgering and/or flowforming. A gun barrel includes a tubular component made of a cobalt-based superalloy material. The component has at least about 25% by weight of hcp phase with basal planes radially oriented perpendicular to an inner diameter of the component.
Abstract: A method of producing a cobalt-based tubular product includes forming a cobalt or cobalt alloy tubular workpiece having at least about 30% by weight of fcc phase and subjecting the workpiece to at least about a 20% wall reduction at a temperature below a recrystallization temperature of the workpiece using a metal forming process. The metal forming process may include radial forging, rotary swaging, pilgering and/or flowforming. A gun barrel includes a tubular component made of a cobalt-based superalloy material. The component has at least about 25% by weight of hcp phase with basal planes radially oriented perpendicular to an inner diameter of the component.
Abstract: Described herein are methods for forming titanium alloy tubes having an ?-? grain structure. The methods include the steps of hot-working a titanium alloy workpiece at a temperature below the ?-transus temperature of the workpiece and above the recrystallization temperature of the workpiece to produce an ?-? titanium alloy preform hollow. Subsequently, the ?-? titanium alloy preform hollow is flowformed, thereby forming a ?-? titanium alloy tube.
Type:
Grant
Filed:
December 3, 2004
Date of Patent:
October 13, 2009
Assignee:
Dynamic Flowform Corp.
Inventors:
Matthew V. Fonte, John F. Heymans, George L. Durfee