Patents Assigned to Dynamic Material Systems, LLC
  • Patent number: 11673840
    Abstract: A complex composite particle is made of a coal dust and binder composite that is pyrolyzed. Constituent portions of the composite react together causing the particles to increase in density and reduce in size during pyrolyzation, yielding a particle suitable for use as a proppant or in a composite structure.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 13, 2023
    Assignee: Dynamic Material Systems LLC
    Inventors: Arnold Hill, William Easter, Walter Sherwood
  • Patent number: 11407687
    Abstract: A complex ceramic particle and ceramic composite material may be made of a pretreated coal dust and a polymer derived ceramic that is mixed together and pyrolyzed in a nonoxidizing atmosphere. Constituent portions of the particle mixture chemically react causing particles to increase in density and reduce in size during pyrolyzation, yielding a particle suitable for a plurality of uses including composite articles and proppants.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: August 9, 2022
    Assignee: Dynamic Material Systems LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 11335962
    Abstract: A polymer derived ceramic precursor is selected and mixed with a contaminated recycled electrode material or materials. The mixture is pyrolyzed to form a ceramic or ceramic-carbon composite, reduced to a powder and formed into an electrode of a battery, such as a lithium ion battery.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 17, 2022
    Assignee: Dynamic Material Systems LLC
    Inventors: Kyle Marcus, Walter Sherwood, William Easter, Arnold Hill, Gordon Nameni
  • Patent number: 11148320
    Abstract: Methods, processes, systems, devices and apparatus are provided for additive manufacture resulting in the 3D printing of ceramic materials and components with a thickness greater than three millimeters (3 mm). A sulfur-free 3D printable formulation comprises a liquid inorganic polymer resin using Stereolithograpy (SLA) printers and Digital Light Processing (DLP) curing of the polymer resin via the chemical bonding of the materials rather than sintering. Thus, the process has shorter manufacturing intervals, significantly lower energy use and produces larger scale ceramic components having less linear shrinkage, less mass loss and high ceramic yield with no corrosive sulfur compounds present in the ceramic component.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 19, 2021
    Assignee: Dynamic Material Systems, LLC
    Inventors: Walter Sherwood, Matthew Stephens, Arnold Hill, William Easter
  • Patent number: 11136270
    Abstract: A composite tile is comprised of coal dust and a pre-ceramic polymer that are mixed together and pyrolyzed to form a ceramic composite. For example, a chemical reaction during pyrolysis chemically converts at least a portion of the coal dust and pre-ceramic polymer to a fire proof ceramic composite suitable for use as a roofing tile either as pyrolyzed or as post-treated to seal cracks and pores formed during pyrolysis.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 5, 2021
    Assignee: Dynamic Material Systems LLC
    Inventors: Walter Sherwood, Arnold Hill, Gordon Nameni, William Easter
  • Patent number: 11104841
    Abstract: A material useful as a proppant comprises a core chemically reacted in situ from coal dust and a polymer derived ceramic material, such that at least a portion of the coal dust is chemically converted to a ceramic, nanoparticles, graphene, nanofibers or combinations of any of these.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: August 31, 2021
    Assignee: Dynamic Material Systems LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 10988680
    Abstract: A composite article is comprised of coal dust, as defined herein, and a polymer derived ceramic material that is pyrolyzed in a substantially non-oxidizing atmosphere. For example, the composite article may be made of a mixture of the coal dust and polymer derived ceramic, from particles formed of a mixture of coal dust and polymer derived ceramic or from complex particle composites comprising a plurality of particles formed of a mixture of coal dust and polymer derived ceramic.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: April 27, 2021
    Assignee: DYNAMIC MATERIAL SYSTEMS LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 10399907
    Abstract: Methods, systems, and processes are used to prepare novel ceramic composite structures that are strong, durable, light-weight, high performance and suitable for a myriad of industrial applications, including, but not limited to, ceramic plates of material suitable for use as ballistic armor. The low manufacturing costs of the processes disclosed provide cheaper, faster ways of producing ceramic matrix composites at lower temperatures and allow for the existence of composite materials and structures which currently are not available.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: September 3, 2019
    Assignee: Dynamic Material Systems, LLC
    Inventors: William Easter, Arnold Hill
  • Patent number: 10392311
    Abstract: Methods for producing Polymer Derived Ceramic (PDCs) particles and bulk ceramic components and compositions from partially cured gelatinous polymer ceramic precursors and unique bulk composite PDC ceramics and unique PDC ceramic particles in size and composition. Methods of making fully dense PDCs over approximately 2 ?m to approximately 300 mm in diameter for applications such as but not limited to proppants, hybrid ball bearings, catalysts, and the like. Methods can include emulsion processes or spray processes to produce PDCs. The ceramic particles and compositions can be shaped and chemically and materially augmented with enhancement particles in the liquid resin or gelatinous polymeric state before being pyrolyzed into ceramic components. Nano-sized ceramic particles are formed from the green body produced by methods for making bulk, dense composite ceramics. The resulting ceramic components have a very smooth surface and are fully dense, not porous as ceramic components from the sol-gel process.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 27, 2019
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 9944021
    Abstract: Methods, processes, systems, devices and apparatus are provided for additive manufacture resulting in the 3D printing of novel ceramic composites. Additive manufacture or 3D printing of bulk ceramic and ceramic composite components occurs at considerably lower temperatures and shorter manufacturing intervals than the current state of the art. The methods, processes, systems, devices and apparatus and selection of precursor resins produce ceramic and ceramic composite material systems which have not been produced before by 3D printing.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 17, 2018
    Assignee: Dynamic Material Systems, LLC
    Inventors: William Easter, Arnold Hill
  • Patent number: 9764987
    Abstract: Methods for producing Polymer Derived Ceramic (PDCs) particles and bulk ceramic components and compositions from partially cured gelatinous polymer ceramic precursors and unique bulk composite PDC ceramics and unique PDC ceramic particles in size and composition. Methods of making fully dense PDCs over approximately 2 ?m to approximately 300 mm in diameter for applications such as but not limited to proppants, hybrid ball bearings, catalysts, and the like. Methods can include emulsion processes or spray processes to produce PDCs. The ceramic particles and compositions can be shaped and chemically and materially augmented with enhancement particles in the liquid resin or gelatinous polymeric state before being pyrolyzed into ceramic components. The resulting ceramic components have a very smooth surface and are fully dense, not porous as ceramic components from the sol-gel process.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: September 19, 2017
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 9434653
    Abstract: Methods, processes, and systems for producing bulk ceramics from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets, without using sponge materials to form gas pathways in the polymer bodies. Ceramics can be formed in hours. Resin droplets can be produced with a sprayer where liquid polymer precursors, mixed with a curing agent, are sprayed forming droplets which are partially cured, collected, and compressed into shapes. Ceramic porosity can be varied, droplet particle sizes can be controlled by adjusting liquid and gas pressure, orifice size, during spraying. Partially cured droplets can be formed via an emulsion process and size controlled by emulsion liquid and surfactant selection parameters.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: September 6, 2016
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 8961840
    Abstract: Methods, processes, and systems for producing bulk ceramics from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets, without using sponge materials to form gas pathways in the polymer bodies. Ceramics can be formed in hours. Resin droplets can be produced with a sprayer where liquid polymer precursors, mixed with a curing agent, are sprayed forming droplets which are partially cured, collected, and compressed into shapes. Ceramic porosity can be varied, droplet particle sizes can be controlled by adjusting liquid and gas pressure, orifice size, during spraying. Partially cured droplets can be formed via an emulsion process and size controlled by emulsion liquid and surfactant selection parameters.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter