Patents Assigned to Dyne Therapeutics, Inc.
  • Publication number: 20230144436
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 11, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn
  • Patent number: 11638761
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: May 2, 2023
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 11633498
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: April 25, 2023
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 11633496
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: April 25, 2023
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20230117883
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits activity of a pro-atrophy gene. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 20, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn
  • Publication number: 20230118799
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 20, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 11629197
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: April 18, 2023
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20230111147
    Abstract: Aspects of the disclosure relate to molecular payloads that modulate the expression or activity of genes involved in muscle growth and maintenance (e.g., MSTN, INHBA, and/or ACVR1B), and complexes comprising a muscle-targeting agent covalently linked to such molecular payloads. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on a muscle cell (e.g., a cardiac muscle cell). In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 13, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Cody A. Desjardins, Duncan Brown, Victor Kotelianski, Timothy Weeden, Brendan Quinn
  • Publication number: 20230111212
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 13, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, Jason P. Rhodes
  • Publication number: 20230113823
    Abstract: Aspects of the disclosure relate to antibodies that bind to transferrin receptor (e.g., transferrin receptor 1) and complexes comprising the antibody covalently linked to a molecular payload. Methods of making and using the antibodies are also provided.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 13, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn
  • Publication number: 20230103793
    Abstract: Aspects of the disclosure relate to antibodies that bind to transferrin receptor (e.g., transferrin receptor 1) and complexes comprising the antibody covalently linked to a molecular payload. Methods of making and using the antibodies are also provided.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 6, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn
  • Publication number: 20230088865
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: January 8, 2021
    Publication date: March 23, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, Jason P. Rhodes
  • Publication number: 20230051954
    Abstract: Aspects of the disclosure relate to antibodies that bind to transferrin receptor (e.g., transferrin receptor 1) and complexes comprising the antibody covalently linked to a molecular payload. Methods of using the antibodies are also provided.
    Type: Application
    Filed: July 8, 2022
    Publication date: February 16, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20230049450
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 16, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20230050911
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: July 8, 2022
    Publication date: February 16, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20230045314
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: July 8, 2022
    Publication date: February 9, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20230044278
    Abstract: Aspects of the disclosure relate to antibodies that bind to transferrin receptor (e.g., transferrin receptor 1) and complexes comprising the antibody covalently linked to a molecular payload. Methods of using the antibodies are also provided.
    Type: Application
    Filed: July 8, 2022
    Publication date: February 9, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20230045002
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: July 8, 2022
    Publication date: February 9, 2023
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20230001002
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Applicant: DYNE THERAPEUTICS, INC.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Patent number: 11518816
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: December 6, 2022
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden