Patents Assigned to EASYL
-
Patent number: 12206095Abstract: Disclosed is an electrode for a rechargeable energy storage device, including several inner layers interposed between two outer layers, the inner layers including several electrode material layers ME composed of at least one electrode active material and several porous current collector layers CC composed of electrically-conductive material(s) whose electronic conductivity is greater than or equal to 102 S·cm-1, the layers of electrode material ME and current collector CC being alternated. The outer layers do not consist of the porous current collector layers CC. Additionally, the electrode has a total thickness ranging from strictly more than 4 mm, preferably ranging from strictly more than 4 mm to 10 mm, in particular ranging from strictly more than 4 mm to 8 mm.Type: GrantFiled: February 27, 2020Date of Patent: January 21, 2025Assignees: EASYL ZINC, CENTRE NATIONAL DE LA RECHERCHEInventors: Vincent Caldeira, Julien Thiel, Marian Chatenet, Laëtitia Dubau, François Lacoste
-
Patent number: 11235979Abstract: Disclosed is a method for manufacturing crystals of aluminates of one or more element(s) other than aluminium, referred to as “A. The method includes: placing starting reagents, including at least one aluminium element source and a source of the element(s) A that has a degree of oxidation of between 1 and 6, in suspension in a liquid medium, forming a suspension referred to as the “starting suspension”; milling the starting suspension at ?50° C., in a three-dimensional liquid medium ball mill for ?5 minutes; recovering, at the outlet of the three-dimensional ball mill, a suspension referred to as the “end suspension” including the starting reagents in activated form or crystals of aluminate of the element(s) A generally in hydrated form; if required, calcination of the end suspension when it includes the starting reagents in activated form, to obtain generally non-hydrated crystals of aluminate of the element(s) A.Type: GrantFiled: October 5, 2017Date of Patent: February 1, 2022Assignee: EASYLInventors: François Lacoste, Valentin Lair, Julien Thiel, Samy Halloumi
-
Patent number: 10941094Abstract: A method for manufacturing calcium diglyceroxide crystals includes at least the following steps: placing at least one calcium element source compound, in particular calcium oxide, in suspension in glycerol or in a homogeneous mixture of glycerol and an anhydrous solvent of glycerol, in particular methanol, referred to as the “starting suspension”, the molar ratio being greater than or equal to 2; milling the starting suspension at an ambient temperature of less than or equal to 50° C. in a three-dimensional liquid-phase ball mill for a holding time of 15 minutes or less; recovering, at the outlet of the mill, a suspension of calcium diglyceroxide crystals, and optionally, washing the obtained suspension with a glycerol solvent in order to eliminate any excess glycerol, optionally, drying the suspension of calcium diglyceroxide crystals so as to obtain a powder of calcium diglyceroxide crystals. Also disclosed are uses associated with the calcium diglyceroxide crystals.Type: GrantFiled: September 29, 2017Date of Patent: March 9, 2021Assignee: EASYLInventors: François Lacoste, Valentin Lair, Julien Thiel, Samy Halloumi
-
Patent number: 10533145Abstract: A method for producing fatty acid alkyl esters and glycerol implementing a set of transesterification reactions between at least one vegetable or animal oil and at least one aliphatic monoalcohol includes: introducing, into a three-dimensional microball mill at least one vegetable and/or animal oil, at least one aliphatic monoalcohol and at least one heterogenous and/or homogenous catalyst in order to form an initial mixture; grinding the initial mixture at a temperature?50° C., in a three-dimensional microball mill, for a residence time?5 minutes; recovering, at the outlet of the three-dimensional mill, a final mixture including at least fatty acid alkyl esters, glycerol, the catalyst and the aliphatic monoalcohol that has not reacted; and separating this final mixture of a first phase including the fatty acid alkyl esters and of a second phase including the glycerol, the aliphatic monoalcohol that has not reacted and the catalyst.Type: GrantFiled: June 30, 2017Date of Patent: January 14, 2020Assignee: EASYLInventors: François Lacoste, Julien Thiel, Valentin Lair, Samy Halloumi
-
Patent number: 10472248Abstract: Disclosed is a method for manufacturing calcium zincate crystals including: placing calcium hydroxide2 and zinc oxide, one of the precursors thereof, or one of the water mixtures thereof in a starting suspension, the mass ratio of water to calcium hydroxide and zinc oxide, or one of the precursors or mixtures thereof, being greater than or equal to 1; milling the starting suspension to an ambient temperature less than or equal to 50° C. in a wet-phase three-dimensional micro-ball mill for a residence time less than or equal to 15 minutes and in particular from 5 to 25 seconds; recovering a calcium zincate crystal suspension coming out of the mill; and optionally, concentrating or drying the calcium zincate crystal suspension so as to obtain a calcium zincate crystal powder. Also disclosed are uses associated with the calcium zincate crystals obtained according to the method described above.Type: GrantFiled: March 31, 2016Date of Patent: November 12, 2019Assignee: EASYLInventors: Francois Lacoste, Julien Thiel
-
Publication number: 20180086646Abstract: Disclosed is a method for manufacturing calcium zincate crystals including: placing calcium hydroxide2 and zinc oxide, one of the precursors thereof, or one of the water mixtures thereof in a starting suspension, the mass ratio of water to calcium hydroxide and zinc oxide, or one of the precursors or mixtures thereof, being greater than or equal to 1; milling the starting suspension to an ambient temperature less than or equal to 50° C. in a wet-phase three-dimensional micro-ball mill for a residence time less than or equal to 15 minutes and in particular from 5 to 25 seconds; recovering a calcium zincate crystal suspension coming out of the mill; and optionally, concentrating or drying the calcium zincate crystal suspension so as to obtain a calcium zincate crystal powder. Also disclosed are uses associated with the calcium zincate crystals obtained according to the method described above.Type: ApplicationFiled: March 31, 2016Publication date: March 29, 2018Applicant: EASYLInventors: Francois LACOSTE, Julien THIEL