Abstract: Controlled, low-turbulence venting of a semiconductor processing vacuum chamber is provided by a venting system including sensing elements for sensing gas conditions, including pressure, in the chamber during venting, and vent rate control elements, including a flow rate regulator valve, responsive to the sensing elements for attaining a venting rate approaching a selected maximal venting rate threshold of sonically choked flow, thereby attaining enhanced non-sonically-choked venting.
Abstract: An ion source provides ions that pass through an analyzing magnet, image slit, and magnetic quadrupole lenses before entering a beam deflector. The deflected ion beam enters a magnetic field established by a dipole magnetic lens of rectangular cross section in planes parallel to the beam plane including the scanned ion beam, and having a variable width gap in a plane perpendicular to the beam plane that provides a parallel scanned ion beam. The parallel scanned ion beam enters a slot-shaped acceleration columnn and then scans a target.
Abstract: A high vacuum ion implantation chamber has a lower wall formed with an opening accommodating a depending sleeve through which a shaft passes supporting a substrate support platform at the top and connectable to external linear and rotary drives at the bottom. The sleeve is formed with four axially spaced annular grooves each coupled to a respective vacuum pump that maintains the annular grooves at respective pressures that progressively increase for grooves further away from the vacuum chamber bottom wall. A lowermost annular groove functions as an exhaust along with the region surrounding the shaft at the bottom of the sleeve. The sleeve also includes an air inlet. The gravity forces acting upon the shaft and platform assembly are counterbalanced by the differential pressure acting over the shaft area between the high vacuum chamber and the ambient surroundings.