Abstract: The present disclosure relates to biosensors, kits and methods for detecting and/or quantifying lysophosphatidic acid (LPA) in a liquid sample such as a serum sample from a subject. The present disclosure also relates to linker compounds that are useful, for example, in the biosensors, kits and methods of the present disclosure and to methods for preparing a biosensor for detecting and/or quantifying lysophosphatidic acid (LPA) in a liquid sample.
Abstract: A surface-modified polymer is described, comprising a polymeric material and a self-assembling monolayer covalently bound thereto. The monolayer comprises monoethylene glycolated-OH (MEG-OH); 2-(3-trichlorosilyl-propyloxy)-ethyl-trifluoroacetate (7-OEG or MEG-TFA); 2,2,2-trifluoroethyl-13-trichlorosilyl-tridecanoate (TTTA); OEGylated TTTA (OEG-TTTA); S-(2-(2-(2-(3-trichlorosilyl-propyloxy)-ethoxy)-ethoxy)-ethyl)-benzenethiosulfonate (OEG-TUBTS); or a combination thereof. Methods are described for forming a surface-modified polymer by surface activation, such as with plasma. By utilizing the surface-modified polymer to make medical equipment or devices for contacting biological fluids, a reduction in surface fouling and thrombus formation can result. Advantageously, polymeric equipment or components so modified may have a reduction in unwanted chemical interactions leading to fouling or clotting.
Type:
Application
Filed:
July 4, 2013
Publication date:
January 16, 2014
Applicant:
ECONOUS SYSTEMS INC.
Inventors:
Michael THOMPSON, Sonia SHEIKH, Jack Chih-Chieh SHENG, Christophe BLASZYKOWSKI, Kiril FEDOROV
Abstract: A coating for a surface of a surgical implant, the coating including a binding protein for capturing cells to the surface via a bi-functional linker molecule. The linker can have a first functional group (such as a trichlorosilyl group) for covalently linking to the surface, and a second functional group (such as a benzothiosulfonate group) for covalently linking to the binding protein. One exemplary linker molecule is S-(11-trichlorosilyl-undecenyl)benzenethiosulfonate. The coating may be a self-assembled monolayer and may also include a spacer molecule, which can be unreactive with the binding protein. The target cells may be endothelial stem cells (such as endothelial progenitor cells). The binding protein may be an antibody, antibody fragment or non-antibody derived antigen binding molecule. The binding protein may bind a cell surface marker specific to target cell type. Coated surgical implants, and methods of forming such a coating are also contemplated.
Type:
Application
Filed:
September 12, 2011
Publication date:
March 29, 2012
Applicant:
ECONOUS SYSTEMS INC.
Inventors:
Michael Thompson, Pasquale Benvenuto, Christophe Blaszykowski
Abstract: An acoustic wave biosensor comprising a surface of a mixed self-assembling monolayer for receiving a probe-biomolecule is described herein. The biosensor surface may comprise a piezoelectric quartz crystal,—for detection purposes with the electromagnetic piezoelectric acoustic sensor (EMPAS)—upon which a mixed self-assembling monolayer is formed, which includes at least one linker, such as 2,2,2-trifluoroethyl-13-trichlorosilyl-tridecanoate (TTTA); its oligoethylene glycol (OEG) analog OEGylated TTTA (OEG-TTTA); S-(2-(2-(2-(3-trichlorosilyl-propyloxy)-ethoxy)-ethoxy)-ethyl)-benzenethiosulfonate (OEG-TU BTS). Linker/diluent systems for attaching a functionalizing entity to the surface of a biosensor are described, as well as methods for preparing a biosensor surface with an oligoethylene glycol linker.
Type:
Application
Filed:
June 6, 2011
Publication date:
December 15, 2011
Applicant:
ECONOUS SYSTEMS INC.
Inventors:
Michael THOMPSON, Sonia SHEIKH, Jack Chih-Chieh SHENG, Christophe BLASZYKOWSKI