Abstract: A method of producing a synthetic diamond is disclosed. The method includes (a) capturing carbon dioxide from the atmosphere; (b) conducting electrolysis of water to provide hydrogen; (c) reacting the carbon dioxide obtained from step (a) with the hydrogen obtained from step (b) to produce methane; and (d) using the hydrogen obtained from step (b) and the methane obtained from step (c) to produce a synthetic diamond by chemical vapor deposition (CVD).
Abstract: The present invention relates to a water-processing system configured to produce purified waste water. The system comprises an inlet for waste water, one or more biological water-treatment units, and an outlet for purified water. The one or more biological water-treatment units are fluidly connected to the inlet and the outlet. Each of the one or more biological water-treatment units comprises: an inlet for receiving water to be treated, a reactor, an outlet for treated water, and ventilation means configured to provide ventilation to the reactor. The reactor is divided into two or more compartments by one or more screens. Each compartment is in fluid communication with the ventilation means, and comprises a biofilm on one or more surfaces. The reactor is configured to expose at least a portion of the waste water to the biofilm in the presence of air supplied by the ventilation means.
Abstract: A method of producing a synthetic diamond is disclosed, the method comprising: (a) capturing carbon dioxide from the atmosphere; (b) conducting electrolysis of water to provide hydrogen; (c) reacting the carbon dioxide obtained from step (a) with the hydrogen obtained from step (b) to produce methane; and (d) using the hydrogen obtained from step (b) and the methane obtained from step (c) to produce a synthetic diamond by chemical vapour deposition (CVD).
Abstract: The present invention relates to a water-processing system configured to produce purified waste water. The system comprises an inlet for waste water, one or more biological water-treatment units, and an outlet for purified water. The one or more biological water-treatment units are fluidly connected to the inlet and the outlet. Each of the one or more biological water-treatment units comprises: an inlet for receiving water to be treated, a reactor, an outlet for treated water, and ventilation means configured to provide ventilation to the reactor. The reactor is divided into two or more compartments by one or more screens. Each compartment is in fluid communication with the ventilation means, and comprises a biofilm on one or more surfaces. The reactor is configured to expose at least a portion of the waste water to the biofilm in the presence of air supplied by the ventilation means.
Abstract: A method of producing a synthetic diamond is disclosed, the method comprising: (a) capturing carbon dioxide from the atmosphere; (b) conducting electrolysis of water to provide hydrogen; (c) reacting the carbon dioxide obtained from step (a) with the hydrogen obtained from step (b) to produce methane; and (d) using the hydrogen obtained from step (b) and the methane obtained from step (c) to produce a synthetic diamond by chemical vapor deposition (CVD).