Patents Assigned to Edwards Lifesciences
  • Patent number: 11963871
    Abstract: Devices and methods for crimping a prosthetic heart valve onto a delivery device are described. In some embodiments, valves are crimped over an inflatable balloon and between proximal and distal shoulders mounted on a shaft inside the balloon. Crimping methods can include multiple compression steps with the valve located in different axial positions relative to the crimping jaws at each different step. In some methods, the valve may extend partially outside of the crimping jaws during certain crimping steps, such that the crimping force is only applied to the part of the valve that is inside the jaws. Exemplary crimping devices can include two or more adjacent sets of jaws that close down to different inner diameters, such that different parts of a valve get compressed to different outer diameters at the same time during a single crimping step.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: April 23, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Nicholas Brandon Aders, Kristen Hicks, Gil Senesh, Michael R. Bialas, Tung T. Le, Sean Chow, Thanh Huy Le
  • Patent number: 11963869
    Abstract: A valved conduit including a bioprosthetic valve, such as a heart valve, and a tubular conduit sealed with a bioresorbable material. The bioprosthetic heart valve includes prosthetic tissue that has been treated such that the tissue may be stored dry for extended periods without degradation of functionality of the valve. The bioprosthetic heart valve may have separate bovine pericardial leaflets or a whole porcine valve. The sealed conduit includes a tubular matrix impregnated with a bioresorbable medium such as gelatin or collagen. The valved conduit is stored dry in packaging in which a desiccant pouch is supplied having a capacity for absorbing moisture within the packaging limited to avoid drying the bioprosthetic tissue out beyond a point where its ability to function in the bioprosthetic heart valve is compromised. The heart valve may be sewn within the sealed conduit or coupled thereto with a snap-fit connection.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: April 23, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Louis A. Campbell, Donald E. Bobo, Jr., Gregory A. Wright, Tak G. Cheung
  • Patent number: 11963870
    Abstract: A method of replacing a native heart valve utilizing a support structure comprising a first fastener, a second faster, a first leaflet brace, and a second leaflet brace. The first leaflet brace is configured to be advanced over a first guide wire to be adjacent to a portion of a first native leaflet. The second leaflet brace is configured to be advanced over a second guide wire to be adjacent to a portion of a second native leaflet. The first fastener and the second fastener are configured to be advanced over the first and second guide wires to respectively engage with first and second ends of the first leaflet brace and the second leaflet brace. A replacement heart valve is deployed within the native heart valve, thereby capturing the first and second leaflets between the support structure and the replacement heart valve.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 23, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Yaron Keidar
  • Patent number: 11957582
    Abstract: A delivery assembly includes a prosthetic device, a catheter shaft, a release wire, a first line, and a second line. The prosthetic device has a first arm and a second arm. The release wire extends through the catheter shaft. The first line includes a first loop. The first line extends from the catheter shaft, through the first arm of the prosthetic device, and to the release wire, where the release wire extends through the first loop. The second line includes a second loop. The second line extends from the catheter shaft, through the second arm of the prosthetic device, and to the release wire, where the release wire extends through the second loop.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: David Alon, Netanel Benichou, Oded Meiri
  • Patent number: 11957579
    Abstract: A loader and method for loading a transcatheter heart valve into a delivery sheath or catheter is described that is also configured to facilitate retrieval of the heart valve back through the delivery sheath while protecting the delivery sheath from damage. Another loader provides for easier crimping and loading of a THV into a delivery sheath or catheter from a storage jar or container. A method for crimping a THV facilitates easier end user preparation of the valve for implantation and reduces the likelihood of tissue deformation in the valve during storage. These devices and methods for deploying THVs simplify the valve replacement procedure.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Asher L. Metchik, Thanh V. Nguyen, Raz Biran, Arvin T. Chang, Tarannum Ishaq Gutierrez, Jeff Lindstrom
  • Patent number: 11957332
    Abstract: In one embodiment, a multi-layer suture fastener that includes a generally disc-shaped body defining a plurality of axially spaced-apart layers. Each layer can include an inner axial surface and an outer axial surface. A suture opening can extend from the inner axial surface to the outer axial surface of each layer. The suture openings can have an open configuration and a closed configuration. One or more lines of suture can be passed through the suture openings when in the open configuration. The suture openings can be placed in the closed configuration. In the closed configuration, the one or more lines of suture can be restricted by radial surfaces of the suture opening from sliding through the suture openings in at least one longitudinal direction of the one or more lines of suture.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Manouchehr A. Miraki
  • Patent number: 11957576
    Abstract: Embodiments of an expandable sheath can be used in conjunction with a catheter assembly to introduce a prosthetic device, such as a heart valve, into a patient. Such embodiments can minimize trauma to the vessel by allowing for temporary expansion of a portion of the introducer sheath to accommodate the delivery apparatus, followed by a return to the original diameter once the prosthetic device passes through. Some embodiments can include a sheath with inner and outer layers, where a folded portion of the inner layer extends through a slit in the outer layer and a portion of the outer layer overlaps the folded portion of the inner layer. Some embodiments include an elastic outer cover positioned outside the outer layer. Embodiments of the present expandable sheath can avoid the need for multiple insertions for the dilation of the vessel, thus offering advantages over prior art introducer sheaths.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Duy Nguyen, Kim D. Nguyen, Thanh V. Nguyen
  • Patent number: 11957574
    Abstract: Prosthetic devices and frames for implantation at a cardiac valve annulus are provided that include an annular frame (having an inflow end and an outflow end) and a plurality of axial frame members that bridge two circumferentially extending rows of angled struts. The axial frame members can include a plurality of axially extending leaflet attachment members and a plurality of axial struts in a 1:1 ratio. Along each of the two rows, the frame can have at least three angled struts between adjacent axial frame members.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Tamir S. Levi
  • Patent number: 11957587
    Abstract: A heart valve sizer and sizer cover are provided for determining the size of a heart valve annulus. The valve sizer can include a handle, a shaft extending distally from the handle, a sizing element coupled to the distal end of the shaft, the sizing element being movable between a first retracted position and a second expanded position, and a sizer cover. The sizer cover can be formed from a continuous sheet of material configured to surround at least a portion of the sizing element of the heart valve sizer so as to guard against entanglement of the sizing element with structures of a human heart.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Gerald B. Gollinger, William A. Maywald, Derrick Johnson, Brian S. Conklin, Ankita Bordoloi Gurunath, Da-Yu Chang
  • Patent number: 11950999
    Abstract: Described embodiments are directed toward centrally-opening, leaflet valve devices and systems for transcatheter delivery having a two-piece valve body as well as methods of making and delivering the two-piece valve devices. A transcatheter valve includes a collapsed configuration and an expanded configuration. The transcatheter valve can further include an everted configuration and a non-everted configuration.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: William C. Bruchman, Cody L. Hartman
  • Patent number: 11951025
    Abstract: Disclosed herein is a method of crimping a prosthetic heart valve using a compact crimping mechanism. The crimping mechanism includes a plurality of jaws configured for coordinated inward movement toward a crimping axis to reduce the size of a crimping iris around a stented valve. A rotating cam wheel acts on the jaws and displaces them inward. An actuation mechanism includes a lead screw, carriage assembly and a linkage to rotate the cam wheel with significant torque.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Tomer Saar, Gregory Rinberg
  • Patent number: 11951006
    Abstract: A prosthetic heart valve has a plurality of valve leaflets that control directional flow of blood through a heart and a stent structure having a plurality of commissure posts supporting the valve leaflets. The stent structure has a covering over the plurality of commissure posts and has a sewing ring at an inflow end of the stent structure. Each of the plurality of commissure posts has a tip and a suture loop is attached to the covering at a location adjacent to or on the tip of the commissure post. Each suture loop provides a passage for a suture to pass through between the covering and the suture loop.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Da-Yu Chang, Amy E. Munnelly, Van Huynh, Avina Gupta, Brian S. Conklin, Sooji Van Echten, Kurt Kelly Reed, Amanda Grace Sall
  • Patent number: 11951001
    Abstract: A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the proximal anchors can extend a significant distance away from the exterior of the frame, such as a length equal to or greater than about one half the diameter of the frame. As another example, the anchors can have looped ends.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: April 9, 2024
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: J. Brent Ratz, Arshad Quadri, Luca Pesce
  • Patent number: 11951003
    Abstract: In one embodiment, a prosthetic valve can comprise a radially expandable and compressible frame, which can include a plurality of struts which are pivotally joined together without requiring individual rivets. In some embodiments, the struts are interwoven, and can be joined using integral hinges formed in the struts, such as by performing alternate cuts on the struts, bending the struts to form stopper tabs adjacent to joints and/or drilling holes in the struts to facilitate interconnecting struts at joints, or otherwise forming integral hinges and corresponding holes at junction points between the struts. In another embodiment, the frame comprises a plurality of inner struts and outer struts which are connected by a plurality of chains of interconnected rivets, avoiding the need to provide individual rivets at each junction between struts. In still another embodiment, separate hinges or flanged rivets are provided to interconnect the struts.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Boaz Manash
  • Patent number: 11950773
    Abstract: An anchoring system comprises a first anchoring device comprising a first attachment mechanism and a plugging device and a second anchoring device comprising a second attachment mechanism, each of the first anchoring device and the second anchoring device being configured to enter a tissue wall at a proximal side of the tissue wall, the first anchoring device being configured to exit the tissue wall through a first hole on a distal side of the tissue wall, the second anchoring device being configured to exit the tissue wall at a second hole on the distal side of the tissue wall, the first attachment mechanism configured to attach to the second attachment mechanism outside of the distal side of the tissue wall, and the plugging device configured to cover the first hole and fit between at least a portion of the first anchoring device and the distal side of the tissue wall.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Emil Karapetian
  • Patent number: 11951008
    Abstract: Described embodiments are directed toward centrally-opening leaflet support devices having a frame and one or more support leaflets coupled to the frame forming a hinge where coupled. The described support leaflets have one or more stiffer regions that facilitate the function of a support leaflet to decrease or prevent prolapse of a native valve leaflet. Methods of making and using such valve devices are also described amongst others.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: William C. Bruchman
  • Patent number: 11951263
    Abstract: Disclosed herein are catheter control handles that include various mechanisms for controlling the circumferential angle and radial magnitude of flexion of an attached catheter. Control handles can comprise a housing. Control wires extend from a distal end of the housing and into a steerable transluminal device. A flex control member is operable to control tension on the pull wires to adjust a magnitude of radial flexion of the steerable transluminal device. A position control member is operable to control tension on the pull wires to adjust a circumferential angle in which the radial flexion of the steerable transluminal device is directed.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Bao Khuu, Matthew T. Winston, Asher L. Metchik, Eric Robert Dixon
  • Patent number: 11944559
    Abstract: Apparatuses, systems, and methods for crimping prosthetic implants onto a delivery apparatus are disclosed. In some examples, a support body for a prosthetic heart valve can comprise a first portion comprising an alignment device configured to couple with a crimping device, and a second portion comprising a support surface that tapers from a wider end disposed adjacent the first portion to a narrower end, where the support surface is configured to receive the prosthetic heart valve thereon and hold one or more leaflets of the prosthetic heart valve in an open position. The support body can further comprise a central channel extending through the first portion and the second portion, the central channel configured to receive a delivery apparatus for the prosthetic heart valve therethrough.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: April 2, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Brendan Michael Dalbow, Ashley Akemi Ishigo, Jennifer Marie Reitmajer, Quang Ngoc Vu, Gonzalo German Angelico
  • Patent number: 11944762
    Abstract: Steerable catheter control handles and catheter assemblies that include pull wires and direction and magnitude controls on the handle operable such that adjustment of the direction and magnitude controls adjusts a direction and degree of catheter flex, thereby to steer the catheter as an operator directs.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: April 2, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Bao Khuu, Matthew T. Winston, Asher L. Metchik, Eric Robert Dixon
  • Patent number: 11944538
    Abstract: A method of reducing regurgitation between native leaflets of an atrioventricular heart valve includes advancing a delivery catheter through a sheath, wherein the delivery catheter has a valve leaflet coaptation element mounted over a distal end portion. The coaptation element is positioned within the heart valve and is permitted to radially expand from a compressed configuration to an enlarged configuration for filling a gap between the native leaflets of the heart valve. After deployment, the position of the coaptation element is fixed relative to the heart valve, thereby reducing regurgitation between the native leaflets of the heart valve and improving heart function.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: April 2, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Stanton J. Rowe, Robert S. Schwartz, Robert A. Van Tassel, Vivian Khalil, Erin M. Spinner, Neil S. Zimmerman, Alexander J. Siegel