Abstract: An inventive hermetically sealed leaded package for in-line fiber optic devices, such as an optical fiber tap, is described. The package advantageously employs electrical feedthroughs that are compatible with batch processing of micromachined silicon wafers.
Type:
Application
Filed:
February 14, 2011
Publication date:
August 18, 2011
Applicant:
EIGENLIGHT CORPORATION
Inventors:
Craig D. POOLE, Adam C. GIROUX, Cathy Shaw TRUMBLE
Abstract: A broadband optical fiber tap for transferring optical energy out of an optical fiber having an optical fiber with a primary and secondary microbends for the purpose of coupling optical energy into the higher-order modes of the fiber, and a reflecting surface formed in the cladding of the fiber and positioned at an angle so as to reflect, by total internal reflection, higher-order mode energy away from the optical fiber. In the preferred embodiment, the two microbends are spaced apart by a distance approximately equal to one-half of the intermodal beat length for LP01 and LP11 modes of a single-mode fiber.
Abstract: An optical fiber tap for transferring optical energy out of an optical fiber having an optical fiber with a short tapered section for coupling optical energy into cladding modes, and a surrounding glass body fused to the optical fiber with the glass body having a polished surface positioned at an angle so as to reflect, by total internal reflection, cladding mode energy away from the optical fiber. An additional glass encapsulating tube is fused to and hermetically seals the glass body and tapered fiber section. For use in an optical power monitor, the optical fiber tap is integrated into a standard electronic package containing a photodiode to convert the tapped-out optical energy into an electrical signal representing the optical energy carried by the optical fiber.