Patents Assigned to Eikos, Inc.
  • Publication number: 20140127122
    Abstract: The invention is directed to carbon nanotube-containing compositions that have increased viscosity and stability. In particular, the invention is directed to methods for manufacturing carbon nanotube films and layers that provide superior electrical properties.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 8, 2014
    Applicant: EIKOS, INC.
    Inventors: Paul J. Glatkowski, Joseph W. Piche, C. Michael Trottier, David J. Arthur, Philip Wallis, JIAZHONG LUO
  • Patent number: 8632699
    Abstract: The invention is directed to carbon nanotube-containing compositions that have increased viscosity and stability. In particular, the invention is directed to methods for manufacturing carbon nanotube films and layers that provide superior electrical properties.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 21, 2014
    Assignee: Eikos, Inc.
    Inventors: Paul J. Glatkowski, Joseph W. Piche, C. Michael Trottier, Philip Wallis, David J. Arthur, Jiazhong Luo
  • Patent number: 7378040
    Abstract: This invention relates to flexible, transparent and conductive coatings and films formed using carbon nanotubes (CNT) and, in particular, single wall CNT, with polymer binders. Preferably, coatings and films are formed from CNT applied to transparent substrates forming one or multiple conductive layers at nanometer level of thickness. Polymer binders are applied to the CNT network coating having an open structure to provide protection through infiltration, and may comprise a basecoat, a topcoat, or a combination thereof, providing enhanced optical transparency, conductivity, moisture resistance, thermal resistance, abrasion resistance and interfacial adhesion. Polymers may be thermoplastics, thermosets, insulative, conductive or a combination thereof. A fluoropolymer containing binder is applied onto a CNT-based transparent conductive coating at nanometer level of thickness on a clear substrate. The fluoropolymers or blend can be either semi-crystalline or amorphous.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: May 27, 2008
    Assignee: Eikos, Inc.
    Inventors: Jiazhong Luo, David J. Arthur, Paul J. Glatkowski
  • Patent number: 7342479
    Abstract: Chemical sensors for detecting analytes in a fluid is disclosed. The chemical sensors include chemically sensitive resistors that utilize carbon nanotubes as a chemically sensitive element. The disclosed sensors additionally utilize polymers which selectively alter or inhibit the chemical sensitivity of the carbon nanotubes. Methods of preparing the sensors as well as methods of their use are also disclosed.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: March 11, 2008
    Assignee: Eikos, Inc.
    Inventors: Paul J. Glatkowski, David H. Landis, Jr., Joseph W. Piché
  • Patent number: 7195754
    Abstract: This invention relates generally to the incorporation of carbon nanotubes into compositions for protection against damage from ultraviolet radiation. In particular, the invention is directed to sunscreen compositions and methods for the preparation of sunscreen compositions.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: March 27, 2007
    Assignee: Eikos, Inc.
    Inventors: Paul J. Glatkowski, Joseph W. Piché, Jeffrey L. Conroy, Roy Bolduc, Pierre LaBlanc
  • Patent number: 7118693
    Abstract: The invention is directed to conformal coatings that provide excellent shielding against electromagnetic interference (EMI). A conformal coating comprises an insulating layer and a conducting layer containing electrically conductive material. The insulating layer comprises materials for protecting a coated object. The conducting layer comprises materials that provide EMI shielding such as carbon black, carbon buckeyballs, carbon nanotubes, chemically-modified carbon nanotubes and combinations thereof. The insulating layer and the conductive layer may be the same or different, and may be applied to an object simultaneously or sequentially. Accordingly, the invention is also directed to objects that are partially or completely coated with a conformal coating that provides EMI shielding.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: October 10, 2006
    Assignee: Eikos, Inc.
    Inventors: Paul J. Glatkowski, Nelson Landrau, David H. Landis, Jr., Joseph W. Piche, Jeffrey L. Conroy
  • Patent number: 7060241
    Abstract: An electrically conductive film is disclosed. According to one embodiment of the present invention, the film includes a plurality of single-walled nanotubes having a particular diameter. The disclosed film demonstrates excellent conductivity and transparency. Methods of preparing the film as well as methods of its use are also disclosed herein.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 13, 2006
    Assignee: Eikos, Inc.
    Inventor: Paul J. Glatkowski
  • Patent number: 7049353
    Abstract: High-use temperature, lightweight polymer/inorganic nanocomposite materials are described having enhanced thermal stability and performance characteristics. These materials are made possible by new methods for synthesizing composite materials that enhance the thermal stability of the nanocomposite systems from 100–150° C. to over 450° C. These materials and techniques for their formation are enabled at least in part by the use of polar organic phthalonitrile monomers and oligomers that can exfoliate layered phyllosilicates, such as smectite clays, in percentages greater than 10% inorganic by weight. This approach offers a solvent-free direct melt intercalation technique that greatly reduces the cost of processing nanocomposites. Additionally, the use of unmodified phyllosilicates overcomes temperature limitations of prior art, which uses organically-modified layered silicates.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 23, 2006
    Assignee: Eikos, Inc.
    Inventors: Jeffrey L. Conroy, Joseph W. Piche, Paul J. Glatkowski, David H. Landis
  • Patent number: 6988925
    Abstract: A method for making a nanocomposite electrode or circuit pattern includes forming a continuous carbon nanotube layer impregnated with a binder and patterning the binder resin using various printing or photo imaging techniques. An alternative method includes patterning the carbon nanotube layer using various printing or imaging techniques and subsequently applying a continuous coating of binder resin to the patterned carbon nanotube layer. Articles made from these patterned nanocomposite coatings include transparent electrodes and circuits for flat panel displays, photovoltaics, touch screens, electroluminescent lamps, and EMI shielding.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: January 24, 2006
    Assignee: Eikos, Inc.
    Inventors: David J. Arthur, Paul J. Glatkowski
  • Patent number: 6986853
    Abstract: A method for repairing fiber-reinforced composite structures while maintaining original EM and lightning protection using carbon nanotubes, fibers, and thermoset resins is disclosed. According to one embodiment of the invention, the method comprises preparing a damaged area for repair; preparing a repair patch for the damaged area, the repair patch comprising nanotubes; applying the repair patch to the damaged area; and curing the repair patch. A repair patch for a composite structure having a conductive layer is disclosed. According to one embodiment of the present invention, the repair patch includes a binder and nanotubes. A repair resin for repairing a composite structure having a conductive layer is disclosed. According to one embodiment of the present invention, the repair layer includes a resin and nanotubes. A putty for repairing a composite structure having a conductive layer is disclosed.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: January 17, 2006
    Assignee: Eikos, Inc.
    Inventors: Paul J. Glatkowski, David H. Landis, Joseph W. Piche, Jeffrey L. Conroy
  • Patent number: 6762237
    Abstract: The present invention relates to a novel nanocomposite dielectric comprising a polymer matrix and a plurality of carbon nanotubes dispersed therein. A method for increasing a dielectric constant of a polymer matrix, as well as a laminate and mobile antenna comprising the novel dielectric are also disclosed.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: July 13, 2004
    Assignee: Eikos, Inc.
    Inventors: Paul J. Glatkowski, David J. Arthur
  • Patent number: 6493208
    Abstract: The present invention is a capacitor of a triphenyl phosphine oxide film as a base dielectric. More specifically, the base dielectric film is selected from the group consisting of Bisphenol-A (Bis-A PEPO). 4′,4′-biphenol (BP-PEPO), and Hydroquinone (HQ-PEPO). TPPO based polymers have a very high breakdown strength, dielectric constant, low dissipation factor and high energy density. An ultra-thin coating can leverage the capabilities of this new dielectric, and potentially other commercial polymer films, to make possible energy storage in excess of 1 J/cc. The triphenyl phosphine oxide film can be fabricated containing a conducting PolyANiline (PAN) polymer layer located between the electrode and core polymer, or by being dip coated with PAN.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 10, 2002
    Assignee: Eikos, Inc.
    Inventors: Joseph Pich{dot over (e)}, Patrick Mack, Paul Glatkowski, Jeffrey Conroy, Paul Winsor
  • Patent number: 6265466
    Abstract: An electromagnetic shielding composite having nanotubes and a method of making the same are disclosed. According to one embodiment of the present invention, the composite for providing electromagnetic shielding includes a polymeric material and an effective amount of oriented nanotubes for EM shielding, the nanotubes being oriented when a shearing force is applied to the composite. According to another embodiment of the present invention, the method for making an electromagnetic shielding includes the steps of (1) providing a polymer with an amount of nanotubes, and (2) imparting a shearing force to the polymer and nanotubes to orient the nanotubes.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: July 24, 2001
    Assignee: Eikos, Inc.
    Inventors: Paul Glatkowski, Patrick Mack, Jeffrey L. Conroy, Joseph W. Piche, Paul Winsor