Abstract: Provided is a wireless 12-lead or multiple unipolar-lead electrocardiograph system without cable connection between a measurement electrode and device body. The present invention includes a measurement electrode that acquires an electrocardiographic signal of a subject, a Wilson terminal that is connected to the measurement electrode and forms an indifferent electrode, and an electrocardiograph body that generates an electrocardiogram. The measurement electrode has active measurement electrodes that wirelessly communicate with the electrocardiograph body, and passive measurement electrodes that are connected to the active measurement electrodes, and the Wilson terminal. The electrocardiograph body generates the electrocardiogram on the basis of a lead signal sent by the active measurement electrodes.
Abstract: Provided is a wireless 12-lead or multiple unipolar-lead electrocardiograph system without cable connection between a measurement electrode and device body. The present invention includes: a measurement electrode that acquires an electrocardiographic signal of a subject 150; a Wilson terminal 180 that is connected to the measurement electrode and forms an indifferent electrode; and an electrocardiograph body 300 that generates an electrocardiogram. The measurement electrode has: active measurement electrodes 200A-200F, 200H, 200J that wirelessly communicate with the electrocardiograph body 300; and passive measurement electrodes 200G, 200I that are connected to the active measurement electrodes 200A-200F, 200H, 200J and the Wilson terminal 180. The electrocardiograph body 300 generates the electrocardiogram on the basis of a lead signal sent by the active measurement electrodes 200A-200F, 200H, 200J.
Abstract: The object is to acquire electroencephalogram of high resolution with fewer number of electrodes than usual. An electroencephalogram measurement apparatus comprising: a plurality of electrodes 110 attached on the scalp of a subject for acquisition of electroencephalogram signals of the subject; and an electroencephalogram generation unit 150 for generating an electroencephalograms at locations of the scalp where the electrodes are attached and electroencephalograms at locations of the scalp where the electrodes are not attached.
Abstract: The object is to acquire electroencephalogram of high resolution with fewer number of electrodes than usual. An electroencephalogram measurement apparatus comprising: a plurality of electrodes 110 attached on the scalp of a subject for acquisition of electroencephalogram signals of the subject; and an electroencephalogram generation unit 150 for generating an electroencephalograms at locations of the scalp where the electrodes are attached and electroencephalograms at locations of the scalp where the electrodes are not attached.